
ESP: Exploiting Symmetry Prior for Multi-Agent
Reinforcement Learning

Xin Yu a, Rongye Shi a;*, Pu Fenga, Yongkai Tiana, Jie Luoa and Wenjun Wu a

aBeihang University, Beijing, China

Abstract. Multi-agent reinforcement learning (MARL) has
achieved promising results in recent years. However, most existing
reinforcement learning methods require a large amount of data for
model training. In addition, data-efficient reinforcement learning re-
quires the construction of strong inductive biases, which are ignored
in the current MARL approaches. Inspired by the symmetry phe-
nomenon in multi-agent systems, this paper proposes a framework
for exploiting prior knowledge by integrating data augmentation and
a well-designed consistency loss into the existing MARL methods. In
addition, the proposed framework is model-agnostic and can be ap-
plied to most of the current MARL algorithms. Experimental tests on
multiple challenging tasks demonstrate the effectiveness of the pro-
posed framework. Moreover, the proposed framework is applied to a
physical multi-robot testbed to show its superiority. Video demon-
strations and Supplementary material are available at the project
website https://sites.google.com/view/esp-marl.

1 Introduction
Artificial intelligence (AI) has been extensively applied across di-
verse scientific disciplines [29, 30]. A variety of AI challenges can
be formulated as multi-agent reinforcement learning (MARL) prob-
lems [9]. With recent advances in MARL, many achievements in
constructing intelligent agents have been realized, thus overcoming
complex challenges, such as biology [40], multiplayer games [2]
and multi-robot tasks [8]. However, the majority of the reinforce-
ment learning (RL) methods strongly rely on massive amounts of
data for model development. From a practical perspective, although
a parallel and accelerated simulation environment enables agents to
solve complex tasks within a reasonable amount of time, learning in
real-world applications suffers from physical conditions-related con-
straints. Similarly, in simulations, due to limitations on the rendering
speed, data efficiency is critical for realizing rapid experimental it-
erations [28, 23]. Therefore, improving the sample efficiency of the
existing MARL methods is essential for both theoretical and practi-
cal research.

Improving sample efficiency entails reducing interactions with the
environment in order to learn a specific policy more effectively. From
the perspective of representation learning, achieving data-efficient
reinforcement learning requires constructing stronger inductive bi-
ases, which poses a challenging task [14]. Recent literature has pro-
posed various methods to address the data inefficiency issue in deep
RL, broadly categorized as the data augmentation approach or net-
work structure design approach. Specifically, data augmentation has

∗ Rongye Shi is the corresponding author. Email: shirongye@buaa.edu.cn.

Agent 1 Agent 2Agent 1 Agent 2

Agent 3

Agent 2

Agent 3

Agent 1

Agent 3

Agent 2

Agent 1

rotate

rotate

policy policy

Agent 3

(a) Data Generation

Agent Network Training LossReplay buffer

Agent 3

Agent 2

Agent 1

Origin data

Sample

D
ata A

ug

Policy&Value
 Network

Symmetry loss

RL loss

Policy&Value
 Network

Symmetry loss

RL loss

Policy&Value
 Network

Symmetry loss

RL loss
Agent 3

Agent 1

Agent 2

Agent 1

Agent 2

Agent 3

Agent 1Agent 1

Agent 1

Agent 2

Agent 3

(b) Network Training

Augmented Sample

Figure 1: Illustration of multi-agent symmetry. Rotating the state
globally in the cooperative navigation task results in a permutation
of the optimal joint policy.

been widely used in recent studies in single-agent RL, most of the
proposed solutions focus on image-based data augmentation [22]. A
technique called RL with augmented data (RAD) incorporates multi-
ple data augmentations into visual observations, such as image crop,
enabling single-agent RL pipelines to outperform prior state-of-the-
art methods [17]. Despite the importance of data augmentation, to
the best of our knowledge, theoretically founded data augmentation
methods in MARL have been scarcely investigated. Second, network
structure design approaches usually aim to design specialized net-
work architectures that implicitly embed prior knowledge of a given
task. Network structure design methods use specific sets of basis
functions chosen according to the type of transformation group [5, 6].
For example, circular harmonic functions and Hermite polynomials
have been used to achieve rotation and scale equivariance, respec-
tively [35, 31]. However, previous studies have shown that this type
of constraint can overly restrict the model and result in sub-optimal
performance on learning tasks [15]. In addition, the sets of basis
functions vary for different transformation groups, making it chal-
lenging to design composite networks that are equivariant to multiple
transformation groups such as rotations, reflections, and changes in
scale. Compared to network structure design methods, our method
enables the simultaneous utilization of multiple forms of symmetry,
providing a more straightforward implementation.

https://sites.google.com/view/esp-marl

The most general symmetry in the multi-agent systems is the
global symmetry shown in Figure 1, where rotating the global state
results in a permutation of the optimal joint policy. Motivated by the
symmetric phenomenon in multi-agent domains, we propose a gen-
eral framework for MARL to increase sample efficiency. The pro-
posed framework consists of two parts, a symmetry augmentation
module, and a well-designed symmetry consistency loss. The sym-
metry augmentation module performs transformations on the trajec-
tories to generate extra data before storing them in a replay buffer.
Moreover, a symmetry consistency loss, which serves as an auxiliary
module, is introduced to bring symmetry prior into an RL agent.

We conduct extensive experiments on several challenging MARL
benchmarks (e.g., Predator-Prey, Cooperative Navigation, and For-
mation Change) to demonstrate the superior performance of the pro-
posed framework regarding data efficiency and higher evaluation re-
wards. Experimental results demonstrate that our proposed method
improves the performance of MARL on both simple and complex
tasks. Compared to network structure design methods, our approach
offers superior performance and is more straightforward to imple-
ment. In addition, we tested the performance of our methods using
physical robots on the Formation Change task.

2 Related work
2.1 Data augmentation in RL

Introducing data augmentation into RL has primarily aimed at en-
hancing data efficiency [12]. A natural approach to exploit data aug-
mentation in single-agent RL is to obtain more data via image trans-
formation during model training [17, 37, 18, 1]. Another type of
approach introduces data augmentation through an innovative con-
trastive learning framework called the CURL. The CURL learns rep-
resentations that can improve data efficiency by enforcing consis-
tencies between an image and its augmented version through in-
stance contrastive loss [16]. Although improving data efficiency is
a widely studied problem in the RL field, fewer studies focused on
exploiting the data augmentation methods in multi-agent domains.
To the best of the authors’ knowledge, the most relevant algorithm
from the available literature to this work is the data augmentation
method for MARL proposed in [38]. This method generates extra
data by performing permutation transformations for homogeneous
agents. The approach of performing data augmentation using permu-
tation invariance is essentially another interpretation perspective of
the parameter-sharing learning paradigm. However, this study goes
beyond permutation symmetries to a broader group of symmetries in
multi-agent RL.

2.2 Integrating inductive bias into network

Currently, the major approach for exploiting inductive bias in neural
networks is to design specialized architectures that implicitly em-
bed prior knowledge associated with a given task [3, 27, 41]. In the
context of multi-agent reinforcement learning (MARL), graph neural
networks (GNNs) are commonly used to model interactions between
agents and allow for a graph-based representation [13, 20]. However,
more prior knowledge needs to be integrated into MARL beyond the
graph structure. The content relevant to this work focuses on em-
bedding symmetry into network. For single-agent RL, symmetries
in the joint state-action space can be expressed in MDP homomor-
phic networks [33]. SO(2)-Equivariant RL enforce symmetry within
the structure of their convolutional layers [34]. As for MARL, Multi-
Agent MDP Homomorphic Networks integrate the symmetries into a

neural network, thus improving data efficiency [32]. These methods
essentially rely on the construction of filters from linear combina-
tions of certain sets of basis functions. Previous studies have shown
that constraining the weight parameterization space to specific basis
sets overly constrains the model, and although this strategy makes
the model equivariant to the desired transformation group, the per-
formance on the actual learning task may be sub-optimal [15]. Fur-
thermore, the method of network structure embedding requires re-
designing standard networks by incorporating sets of complex basis
functions that tend to vary for different transformation groups. This
makes it difficult to design composite networks that are equivariant
to multiple transformation groups, such as rotations, reflections, and
changes in scale [36, 31]. In contrast, our method enables the si-
multaneous utilization of multiple forms of symmetry and avoids the
limitations of network structure embedding in terms of complexity
and design.

3 Background
3.1 Group and transformations

We provide a brief introduction to the concepts of groups and trans-
formations in this section [4]. A group G is a set with a binary op-
erator that have specific mathematical properties: identity, inverse,
closure, and associativity. We will refer extensively to the group
SO(2) and its cyclic subgroup Cn. SO(2) is the group of con-
tinuous rotations {Rθ : 0 ≤ θ < 2π}. Cn is the discrete subgroup
Cn =

{
Rθ : θ ∈

{
2πi
n

| 0 ≤ i < n
}}

of rotations.
A rotation matrix is a transformation matrix that describes per-

forming a rotation in Euclidean space [10]. For a set of rotations
{0◦, 90◦, 180◦, 270◦}, the rotation matrix is defined as follows:

R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
. (1)

The four group axioms are satisfied in the case of a rotation transfor-
mation. This paper primarily utilizes theC4 group, while our method
can be applied to other groups as well.

3.2 Equivariance and invariance

The symmetry appearing in multi-agent systems can be denoted as
equivariance and invariance. Given a transformation operator Lg :
X → X and a mapping function f : X → Y , if there exists a second
transformation operator Kg : Y → Y in the output space of f such
that:

Kg[f(x)] = f (Lg[x]) , (2)

where g ∈ G and G is a mathematical group, then, function f is
equivariant to the transformation Lg . A related notion to equivari-
ance is invariance. If for any choice of g ∈ G we have that Kg = I ,
the identity function, then we say function f is invariant to transfor-
mation Lg .

Figure 1 shows the equivariance of the optimal policy, rotating the
state globally results in a transformation of the optimal joint policy.
Given two states s and Lg[s], the optimal policy π∗ is equivariant to
the transformation Lg which is denoted byKg[π

∗(s)] = π∗ (Lg[s]).

3.3 Multi-agent proximal policy optimization

Multi-agent Proximal Policy Optimization (MAPPO) is a variant of
PPO which is specialized for multi-agent settings. In the default for-
mulation of MAPPO under the Decentralized Partially Observable

Markov Decision Process (Dec-POMDP) framework, the agents em-
ploy the trick of policy sharing. As such, the MAPPO learns policy
πθ by optimizing the following objective:

Jπ(θ) =

n∑
i=1

Eπθold

[
πθ

(
ai | s

)
πθold (ai | s)A

π
(
s, ai

)]
, (3)

where πθold is the behavior policy used to collect trajectories, πθ is
the policy we want to optimize, andAπ

(
s, ait

)
denotes the advantage

function. And the critic network is trained to optimize the following
objective:

JV π (ψ) = −
n∑
i=1

Eπ
[
V πtarget (s)− V πψ (s)

]2
. (4)

In the above equations, V πtarget (s) denotes the target value computed
by Generalized Advantage Estimation [39]. For ease of clarity, we
simplified the description of the objective. We use s to denote the
input of both policy and value functions, while the actual input may
not be the same.

4 Problem statement
4.1 Cooperative markov game

We formulate the cooperative MARL problem as cooperative
Markov game [19]. An n-agent cooperative Markov game can be
represented using a tuple (N,S, {Ai}ni=1 , R, T,Ψ), where N de-
notes the set of agents, S is the state space, and Ai is the action
space of an agent i = 1, . . . , n. Let A = A1 × A2 × · · · × An be
the joint action space. T : S×A×S → [0, 1] is the transition func-
tion. Ψ is the set of admissible state-action pairs. At time step t, the
agents are at state st (which may not be fully observable); the agents
take independent action (a1, ..., aN) rely on their policy. Then, the
environment emits the bounded joint rewardR and moves to the next
state st+1. The agents aim to maximize the expected joint return, de-
fined as Eπ

[∑∞
t=0 γ

tR (st, at)
]
, where γ is the discount factor, by

selecting actions according to the policy πi : S × Ai → [0, 1]. The
initial states are determined by a distribution η : S → [0, 1].

4.2 Symmetry markov game

We propose Symmetry Markov game which is a subclass of the co-
operative Markov game endowed with symmetry characterization.
The Symmetry Markov game (N,S, {Ai}ni=1 , R, T,Ψ, G) is a co-
operative Markov Game that satisfies the conditions of reward in-
variance and transition invariance. The state transformation and ac-
tion transformation in the Symmetry Markov game are defined as
Lg : S → S and Kg : A → A, respectively. For state-action pairs
(s, a) ∈ Ψ, we denote the transformation of group g on s and a as
(Lg[s],Kg[a]) ∈ Ψ. Further, for all g ∈ G, s ∈ S, a ∈ A, the con-
ditions of reward invariance and the transition invariance are given
by:

R(s, a) = R(Lg[s],Kg[a]), (5)

T (s, a, s′) = T (Lg[s],Kg[a], Lg[s
′]). (6)

We assert that the symmetry property is a common occurrence in
many real-world multi-agent tasks, albeit often requiring effort to
identify. One approach to identifying symmetry, for instance, is to
observe whether an optimal action remains optimal for a transformed
state. If so, the symmetry property may be present. It should be em-
phasized that our method is not restricted to the Symmetry Markov

game and can also be applied to Dec-POMDPs with symmetry. Ad-
ditional details on this topic are available in the Sec.4 of the Supple-
mentary Material.

5 Methods
In this section, we introduce our proposed framework, the Symmetry
Prior Exploitation (ESP), for improving the performance of existing
MARL algorithms. It is important to note that although fully utiliz-
ing symmetry is a desirable property in certain deep learning applica-
tions, our primary objective is to maximize the performance of agents
in reinforcement learning tasks. To achieve this goal, we avoid using
a hard constraint approach that embeds symmetry into the network
structure. Instead, we treat symmetry as an additional objective and
incorporate it through soft constraints such as data augmentation and
regularization. This allows us to improve the performance of the re-
inforcement learning algorithm while benefiting from the advantages
of symmetry. ESP comprises of two main components: a symmetry
augmentation module and a symmetry consistency loss module.

5.1 Symmetry augmentation

The most straightforward way to utilize symmetry is through data
augmentation. This approach has been widely used in deep learn-
ing and has been shown to be effective in various tasks. In the con-
text of multi-agent reinforcement learning, data augmentation can be
used to generate additional samples that reflect the symmetry prop-
erty of the environment, which can improve the training efficiency
of the agents. Although data augmentation has been widely used in
supervised learning, it still lacks a theoretical framework to prove
the correctness of exploiting symmetry to augment state-action pairs
in MARL. This study proposes a multi-agent optimal value function
equivalence proposition for the symmetric Markov game.

In a Symmetry Markov game, the transition and reward functions
are invariant to group elements g ∈ G acting on the state and action
space. In the following, variables without a subscript i denote the
concatenation of all variables for all agents. (e.g. a denotes the joint
actions of all agents).

Proposition 1 (Optimal value equivalence). Consider a Symmetry
Markov game (N,S, {Ai}ni=1 , {Ri}

n
i=1 , T,Ψ, G) with a invariant

transformation h = (Lg,Kg) where g ∈ G. For any (s, a) ∈ Ψ, it
holds that Q⋆(s, a) = Q⋆(Lg[s],Kg[a]).

A detailed proof of proposition 1 is provided in Sec.1 of the Sup-
plementary Material. Proposition 1 indicates that using transforma-
tion data to train the policy in a Symmetry Markov game is reason-
able. The process of utilizing data augmentation in MARL is demon-
strated in Figure 2, where the policy interacts with the environment
to generate samples that are subsequently augmented. These trajec-
tories can then be stored in the replay buffer and used for training
purposes. This will be explained in the example of a multi-agent nav-
igation task, which is shown in Figure 1. In this task, agents need to
cover three target locations in a two-dimensional space simultane-
ously while avoiding collisions with each other. Agents observe the
relative positions of other agents and landmarks. When performing
a rotation operation on a state, each element can be multiplied by
the rotation matrix given in Equation (1). After multiplying the ac-
tion vector by the permutation matrix, a set of trajectories consisting
of true trajectories and their symmetric trajectories is obtained. It is
worth mentioning that the proposed symmetry augmentation method
is not limited by the type of algorithm and can be directly applied to
most MARL algorithms.

Agent 1

Agent 2

Agent 3

Agent 3
Agent 2

Agent 1

Agent 3Agent 2

Agent 1

Agent 3Agent 2

Agent 1

Agent 3Agent 2

Agent 1

Agent 3Agent 2

Agent 1

Agent 3Agent 2

Agent 1

...

Environment

Symmetry loss

RL loss

Agent 3

Agent 1

Agent 2

Sample

Policy&Value
 Network

Policy&Value
 Network

Policy&Value
 Network

Store

Buffer

Rotation

Interact

Rotation

Agent 1

Agent 1

Agent 2

Agent 3

Agent 3

Agent 2

Rotation Rotation

(a) Symmetry Augmentation (b) Symmetry Consistency Loss

Agent 1

Agent 2
Agent 3

... Symmetry loss

RL loss

Symmetry loss

RL loss

Figure 2: The overall framework of the proposed ESP. The ESP consists of the symmetry augmentation module and symmetry consistency
loss module. symmetry augmentation module: the policy interacts with the environment to generate samples, which are then augmented and
deposited into a buffer. symmetry consistency loss: transitions are sampled from the buffer, and the data are transformed to obtain symmetric
transition pairs, which are subsequently used to compute symmetry consistency loss and further update the agent network.

5.2 Symmetry consistency loss

While data augmentation has been previously utilized in RL, we ar-
gue that there are issues with its application in practice. For clarity
of presentation, the MAPPO is used as an example to introduce the
symmetry consistency loss. If transformation (Lg,Kg) is applied to
the algorithm, the MAPPO objective changes, and equation (3) is
replaced by

Jπ(θ) =

n∑
i=1

Eπθold

[
πθ

(
Kg[a

i] | Lg[s]
)

πθold (ai | s) Aπψ

(
s, ai

)]
. (7)

However, the right hand is not a sound estimate of the left hand
because πθ(Kg[a] | Lg[s]) ̸= πθ(a | s), particularly in the early
stage of training. In fact a certain transformation (Lg,Kg) for data
augmentation can result in an arbitrarily large ratio πθ(Kg[a] |
Lg[s])/πθold(a | s). Please see the Sec.2 of the Supplementary Ma-
terial for more details. In multi-agent settings, using data augmen-
tation to improve sample efficiency can be challenging. The reason
for this is that when multiple agents are considered, more sources
of variance are introduced, making the training severely unstable as
shown in equation (7). The proposed symmetry consistency loss pro-
vides a solution to this challenge and helps to make the use of data
augmentation successful in multi-agent settings.

Symmetry consistency loss. In order to properly utilize data aug-
mentation in multi-agent reinforcement learning, we have designed
a symmetry consistency loss for the policy and value function. The
policy consistency loss term Sπ(θ) is defined as

Sπ = KL [πθ(Kg[a] | Lg[s]) | πθ(a | s)] , (8)

aims to constrain distribution πθ(Kg[a] | Lg[s]) to be close to πθ(a |
s). This helps guide the training process according to the symmetry
prior.

Assume that Vψ(s) represents an approximate value for state s,

the symmetry consistency loss for value function is shown as

SV = Es,a
[
(Vψ(s)− Vψ (Lg[s]))

2] , (9)

designed to minimize the discrepancy between the outputs of the
value function when provided with the original input and the
symmetry-transformed input. Therefore, we regard Equation (8) and
(9) as the symmetry consistency loss.

MARL with symmetry consistency loss. It is convenient to com-
bine the symmetry consistency loss with the existing MARL algo-
rithms. For the policy-based algorithm MAPPO, our ESP framework
maximizes the following objective:

JESP = JMAPPO − c(Sπ + SV), (10)

where c is the hyperparameter that controls the symmetry consis-
tency loss coefficient. JMAPPO are defined in Equation (3) and (4).
As shown in Figure 2, data sampled from the replay buffer is trans-
formed to (Lg[s],Kg[a]), and the paired data are used to calculate
the symmetry consistency loss. We can adjust hyperparameters c ac-
cording to the strength of symmetry to attempt to embed symmetry
into the learning process.

5.3 Algorithm description

The training procedure of our ESP framework is described in
Figure 2. We start by initializing the group transformation h =
(Lg,Kg) alongside several training parameters, including transfor-
mation group g, agent numbers, maximum steps, and batch size.
Then the transformation h is selected according to group g. After
that, the real trajectories generated by agents are augmented by sym-
metric transformation. Both real and augmented samples are stored
in an experience replay buffer. Finally, data are sampled from the
replay buffer to update the agent network using the symmetry con-
sistency loss. Our method is based on data augmentation and is not
limited by fully observable or partial observable. When facing par-
tially observable problems, we can rotate the state globally during the

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps 1e6

0

20

40

60

80

Ep
is

od
e

R
ew

ar
ds

MADDPG
MADDPG-ESP
QMIX
QMIX-ESP
MAPPO
MAPPO-ESP

(a) Predator-Prey

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps 1e6

220

200

180

160

140

120

100

Ep
is

od
e

R
ew

ar
ds

MAPPO
MAPPO-ESP
MADDPG
MADDPG-ESP
QMIX
QMIX-ESP

(b) Cooperative Navigation

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

50

0

50

100

150

200

Ep
is

od
e

R
ew

ar
ds

MAPPO
MAPPO-ESP
QMIX
QMIX-ESP
MADDPG
MADDPG-ESP

(c) Formation Change

Figure 3: Learning curves of the original MADDPG, QMIX, and MAPPO and their versions with the ESP framework on the three multi-agent
tasks. Each experiment was executed ten times with different random seeds. The solid lines denote the algorithm employing ESP framework.

centralized training phase, and then augment the agent’s trajectories
which can be used to train the algorithm. In the execution phase, the
agents can perform the policy in a distributed manner.

6 Experiments
6.1 Environmental setting

The effectiveness of our framework was verified by experiments on
four different tasks, cooperation navigation (CN), predator-prey (PP),
formation change (FC), and wildlife monitoring. About the detailed
settings of the task, such as reward function, state space, and action
space, please refer to the Sec.5 of the Supplementary Material.

Predator

Prey

Obstacle

Agent

Target
Obstacle

Agent

(a) Predator-Prey

Predator

Prey

Obstacle

Agent

Target
Obstacle

Agent

(b) Navigation

Predator

Prey

Obstacle

Agent

Target
Obstacle

Agent

(c) Formation Change

Figure 4: The schematics of the experimental tasks.

Predator-Prey. Predator-Prey is a classic scenario implemented
in a multi-agent particle environment [25]. In this task, collaborating
agents need to catch prey. Predators receive a reward at every time
step when at least one predator is on top of the prey. The Predator-
Prey task is presented in Figure 4a.

Cooperative Navigation. Cooperative navigation is a classic sce-
nario implemented in a multi-agent particle environment. In this task,
agents need to cover target landmarks whilst avoiding collisions with
each other. Both agents and targets are spawned at random locations
at the start of each episode. A classic cooperative navigation scenario
with three agents is presented in Figure 4b.

Formation Change. A multi-robot formation change task was de-
signed inspired by [8]. This task is shown in Figure 4c, in this task,
all robots started on a square formation and had their goals set to the
opposite side. The Epuck was selected as a model in the open-source
mobile robot simulator Webots [24]. The Epuck was controlled by
assigning the wheel speed. Robots were required to learn to avoid
obstacles and each other and coordinate to cover the destinations.
Robots took actions according to the current state in each step and

obtained the corresponding rewards, and then made the next state.
When the maximum step number was reached, the current episode
ended, and the next one started.

Wildlife monitoring. The wildlife monitoring is a grid-world
based environment, where a set of drones has to coordinate to ac-
complish the task [33]. The goal is to trap poachers by having one
drone hover above them while the other assists from the side. Two
drones cannot be in the same location at the same time. This task
was used to compare our ESP with the network design method.

Baselines. The proposed framework was applied to several base-
lines, including Multi-Agent Deep Deterministic Policy Gradient
(MADDPG), Monotonic Value Function Factorisation for Deep
Multi-Agent Reinforcement Learning (QMIX), and Multi-Agent
Proximal Policy Optimization (MAPPO), which are mainstream
MARL approaches [26, 21, 39].

6.2 Main results

This section presents the experimental results obtained using the
setup described in Section 6.1. The performance of each algorithm
was evaluated with ten different random seeds, and the final experi-
mental results are shown in Figure 3 and Table 1. The results show
that the algorithms adopting the ESP framework achieved different
degrees of advantage over their original versions.

Predator-Prey. In this scenario, there were three predators and
one prey. As shown in Figure 3a, the proposed ESP framework out-
performed the baseline methods significantly. The results indicated
that the proposed framework could increase both the data efficiency
and the convergence reward.

Cooperative Navigation. The cooperative navigation was a fully
cooperative environment, where 3 agents (circles) cooperated to
reach 3 landmarks (crosses) under a minimum number of collisions.
Similarly, as shown in Figure 3b, the results show that the proposed
framework can improve data efficiency and convergence rewards in
this task.

Formation Change. To evaluate the proposed method in com-
plex tasks, experiments were conducted on the multi-robot forma-
tion change task in the Webots simulator, as shown in Figure 4c.
In this scenario, eight robots started in a square formation and had
their goals set on the opposite side. The experimental results showed
that the MADDPG and QMIX could not learn a useful policy in this
task, whereas the agents trained by the MAPPO-ESP and MAPPO
could reach the goal while avoiding collisions with each other and
obstacles. As presented in Figure 3c, the algorithms enhanced by

Table 1: Episode rewards of the ESP and baselines on the three tasks. ’500k’ and ’3000k’ represent the number of training steps of the
algorithms. The error bars are the standard error of the mean.

Task Steps MADDPG MADDPG-ESP QMIX QMIX-ESP MAPPO MAPPO-ESP

Predator-Prey 500k 56.81±11.26 80.71±9.12 38.93±8.96 59.95±4.86 28.35±6.76 45.22±5.45
3000k 85.43±8.14 87.06±4.87 48.78±7.75 57.75±6.81 32.54±8.21 59.54±4.32

Cooperative Navigation 500k -145.23±3.71 -132.22±1.27 -154.24±3.16 -140.12±2.25 -132.65±2.89 -122.25±1.62
3000k -122.63±6.04 -112.21±2.75 -124.67±3.05 -113.84±1.43 -126.97±2.12 -110.22±2.12

Formation Change 200k -45.63±13.96 -41.13±11.17 48.53±20.12 51.23±14.71 122.56±15.12 163.18±14.14
1000k -42.13±10.71 -44.13±12.31 49.44±18.71 59.47±14.35 140.64±18.45 170.85±10.2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps 1e6

220

200

180

160

140

120

Ep
iso

de
 R

ew
ar

ds

MADDPG
Rot90
Rot90+Rot180
Rot90+Rot180+Rot270

(a) Learning curve of MADDPG using aug-
mentation solely with different numbers.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps 1e6

220

200

180

160

140

120
Ep

iso
de

 R
ew

ar
ds

MADDPG
Rot90
Rot90+Rot180
Rot90+Filp

(b) Learning curve of MADDPG using differ-
ent augmentation types.

0 0.01 0.05 0.1 0.5 1
Symmetry Loss coefficient

160

150

140

130

120

110

100

Ep
is

od
e

R
ew

ar
ds

500k steps
3000k steps

(c) Parameter sensitivity of symmetry loss co-
efficient at different training steps.

Figure 5: The ablation study and parameter sensitivity of our ESP framework.

the proposed framework obtained higher rewards than their origi-
nal versions. This indicates that the proposed method can effectively
improve the performance of multi-agent reinforcement learning al-
gorithms in challenging environments.

In Table 1, the episode rewards of different algorithms at different
training steps in the three task scenarios are presented. The superior-
ity of the proposed framework is reflected in two main aspects. First,
the proposed algorithm outperforms baseline algorithms by giving
higher converged rewards. Additionally, it can be observed that the
proposed algorithm exhibits faster convergence during training, pos-
sibly due to the utilization of prior knowledge within the framework.
In contrast, the baseline trains the network through pure trial and er-
ror, which has a high computational cost. Consequently, the proposed
method has strong versatility and can perform well in different tasks.

6.3 Ablation study

To verify the effectiveness of each part in the proposed framework,
ablation experiments were conducted in cooperative navigation task.
Our experiments demonstrate that: 1) Using a single data augmen-
tation significantly improves performance, whereas adding more of
the same type has only a minor effect. 2) Using diverse transforma-
tion types is more effective than using multiple transformations of the
same type. 3) The data augmentation and symmetry loss modules are
both effective and improve performance when used in combination.

Impact of the number and type of transformations. In this sec-
tion, we investigate the impact of using different numbers and types
of symmetric transformations on performance without using sym-
metry loss. Firstly, we examine the impact of using different quanti-
ties of the same group of augmentations. As shown in Figure 5a, we
used one to three rotation augmentations. We observed that the con-
vergence speed of MADDPG gradually increased with an increas-
ing number of rotations of the same type, and convergence reward

slightly improved. Secondly, we analyze the impact of using differ-
ent types of symmetry transformations. We denote the flip around
the x-axis as Flip. As illustrated in Figure 5b, the simultaneous use
of rotation and flip has a more pronounced effect on performance
than using only rotation transformations.

Effect of Symmetry Consistency Loss Coefficient. In this sub-
section, we analyze the impact of the symmetry consistency loss co-
efficient. We use the transformation of rotation by 90 degrees for
the remaining experiments. The ESP was tested with different val-
ues of the symmetry consistency loss coefficient. In Figure 5c, the
horizontal axis denotes the value of the symmetry consistency loss
coefficient, and the vertical axis shows the testing episode reward av-
eraged over ten seeds. The color of a line denotes a different step
of the training steps. When the symmetry consistency loss coeffi-
cient equaled zero, the algorithm degraded to the baseline algorithm
MADDPG. The results indicated that as the coefficient value in-
creased, the episode rewards of the early training stage (i.e., 500k
steps) first increased correspondingly and then decreased when the
coefficient was larger than 0.5. However, the coefficient had little
effect on the convergence episode rewards, at the training step of
3,000k step.

Effect of different modules. The effect of data augmentation and
symmetry consistency loss on the MADDPG performance was inves-
tigated in this subsection. We choose c= 0.5 to balance the traditional
RL loss and the symmetry consistency loss. Four variations were an-
alyzed: 1) MADDPG which is the vanilla algorithm; 2) MADDPG
+ loss, which used only the symmetry consistency loss in the MAD-
DPG; 3) MADDPG + Data aug, which used only the symmetry aug-
mentation in the training process; 4) MADDPG-ESP, which used the
symmetry consistency loss and the symmetry augmentation in the
MADDPG. As shown in Figure 6a, when used separately, both of
the proposed modules improved the convergence speed and the fi-
nal rewards. When used together, their combined performance was

0 1 2 3 4 5
Timesteps 1e6

400

350

300

250

200

150

100

Ep
is

od
e

R
ew

ar
ds

MADDPG
MADDPG+Loss
MADDPG+Data aug
MADDPG-ESP

(a) Learning curve of four variants of MAD-
DPG in the task.

0 200 400 600 800 1000 1200
Timesteps

0.0

0.5

1.0

1.5

2.0

2.5

Ep
is

od
e

R
ew

ar
ds

MPN-ESP
Equivariant MPN
Stardard MPN

(b) Results for the drone wildlife monitoring
task shown over ten random seeds.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x(m)

1.0

0.5

0.0

0.5

1.0

y(
m

)

(c) Trajectories of the robots executing the
policy in the formation change task.

Figure 6: Additional experimental results for validating the effectiveness of the ESP framework.

even better. The empirical results suggested the importance of the
two modules in improving multi-agent task performance.

6.4 Comparison with network design method

In [32], the authors integrated symmetry into the MARL process by
designing a specialized network structure, namely Multi-Agent MDP
Homomorphic Networks, for wildlife monitoring tasks. However,
Multi-Agent MDP Homomorphic Networks are limited to grid-world
environments and rely on pixel-based states, making them challeng-
ing to extend to more complex scenarios. The three task scenarios
shown in Figure 4 involve complex, continuous state spaces that can-
not be handled by the network structure proposed in [32]. Therefore,
we compared our proposed ESP method with their approach in the
wildlife monitoring task.

Authors of [32] designed Multi-Agent MDP Homomorphic Net-
works (Equivariant MPN), which is built upon the standard MPN.
Similarly, we employed the ESP framework on the PPO algorithm
used in Equivariant MPN and denoted as MPN-ESP. As depicted in
Figure 6b, the proposed ESP exhibits comparable performance to that
of using a Multi-Agent MDP Homomorphic Network. We conclude
that our approach demonstrates similar results as network structure
design methods, but it is simpler to implement and more easily adapt-
able to different tasks.

7 Demonstration on robots

As shown in Figure 7, the trained policies were deployed on the
Epuck, which is a small, lightweight, open-source robot platform.
The formation change task presented in Section 6.1 was used in this
experiment. We followed a direct sim2real paradigm to deploy the
policy network [7]. Trajectories from a successful demonstration are
displayed in Figure 6c. Different colors denote the trajectories of
different robots, and color transparency indicates the temporal state.
By incorporating our ESP approach into the MAPPO algorithm, the
agents are able to complete tasks with fewer risky states. Risky states
are defined as those in which the distance between agents is less than
5 centimeters, and the rate of risky states is the proportion of risky
states to all states. The rate of risky states for ESP-MAPPO is 2.2%,
while the rate for MAPPO is 5.8%. Additional details and videos are
provided in Sec.6 of the Supplementary Material.

(a) Start points (b) Trajectories (c) End points

Figure 7: Real-world formation change on a swarm of robots. The
robots successfully switched their positions to the antipodal points
by achieving collision avoidance.

8 Conclusions

In this paper, we proposed a general framework named ESP that uti-
lizes prior knowledge to increase sample efficiency in multi-agent re-
inforcement learning. Our framework includes two key components:
symmetry augmentation and symmetry consistency loss. By per-
forming symmetric transformations on state-action pairs, our method
generates additional data, which is stored in the replay buffer for
training. The symmetry consistency loss serves as an auxiliary mod-
ule to incorporate symmetry representation into the RL agent. Exten-
sive empirical experiments on various multi-agent tasks demonstrate
that our ESP framework can effectively enhance the performance
of existing MARL algorithms. Moreover, our approach outperforms
network structure design methods while being more straightforward
to implement.

However, our approach is currently limited to scenarios where the
presence of symmetry is known. Future work can extend our ap-
proach to more complex real-world tasks with unknown prior knowl-
edge by incorporating automatic symmetry discovery functionality.
Additionally, considering problems that only have local symmetry
or break global symmetry to a certain degree could be a promising
direction. Moreover, the integration of symmetry principles in the
enhancement of robustness within multi-agent systems emerges as a
noteworthy direction of research[11]. Overall, our work sheds light
on the application of reinforcement learning in complex physical en-
vironments and provides a useful framework for incorporating prior
knowledge in multi-agent settings.

Acknowledgements

This work is supported by the National Key Research and Develop-
ment Project of China (No. 2022ZD0117801).

References

[1] Fabio Amadio, Adrià Colomé, and Carme Torras, ‘Exploiting sym-
metries in reinforcement learning of bimanual robotic tasks’, IEEE
Robotics and Automation Letters, 4(2), 1838–1845, (2019).

[2] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung,
Przemysław D biak, Christy Dennison, David Farhi, Quirin Fischer,
Shariq Hashme, Chris Hesse, et al., ‘Dota 2 with large scale deep re-
inforcement learning’, arXiv preprint arXiv:1912.06680, (2019).

[3] Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković,
‘Geometric deep learning: Grids, groups, graphs, geodesics, and
gauges’, arXiv preprint arXiv:2104.13478, (2021).

[4] Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković,
‘Geometric deep learning: Grids, groups, graphs, geodesics, and
gauges’, arXiv preprint arXiv:2104.13478, (2021).

[5] Taco Cohen and Max Welling, ‘Group equivariant convolutional net-
works’, in International conference on machine learning, pp. 2990–
2999. PMLR, (2016).

[6] Taco S Cohen and Max Welling, ‘Steerable cnns’, arXiv preprint
arXiv:1612.08498, (2016).

[7] Cristino De Souza, Rhys Newbury, Akansel Cosgun, Pedro Castillo,
Boris Vidolov, and Dana Kulić, ‘Decentralized multi-agent pursuit us-
ing deep reinforcement learning’, IEEE Robotics and Automation Let-
ters, 6(3), 4552–4559, (2021).

[8] Tingxiang Fan, Pinxin Long, Wenxi Liu, and Jia Pan, ‘Distributed
multi-robot collision avoidance via deep reinforcement learning for
navigation in complex scenarios’, The International Journal of
Robotics Research, 39(7), 856–892, (2020).

[9] Pu Feng, Xin Yu, Junkang Liang, Wenjun Wu, and Yongkai Tian,
‘Mact: Multi-agent collision avoidance with continuous transition rein-
forcement learning via mixup’, in International Conference on Swarm
Intelligence, pp. 74–85. Springer, (2023).

[10] Jay P. Fillmore, ‘A note on rotation matrices’, IEEE Computer Graphics
and Applications, 4(2), 30–33, (1984).

[11] Jun Guo, Yonghong Chen, Yihang Hao, Zixin Yin, Yin Yu, and Simin
Li, ‘Towards comprehensive testing on the robustness of cooperative
multi-agent reinforcement learning’, in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 115–122,
(2022).

[12] Hengyuan Hu, Adam Lerer, Alex Peysakhovich, and Jakob Foerster,
‘“other-play” for zero-shot coordination’, in International Conference
on Machine Learning, pp. 4399–4410. PMLR, (2020).

[13] Jiechuan Jiang, Chen Dun, Tiejun Huang, and Zongqing Lu,
‘Graph convolutional reinforcement learning’, arXiv preprint
arXiv:1810.09202, (2018).

[14] George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris,
Sifan Wang, and Liu Yang, ‘Physics-informed machine learning’, Na-
ture Reviews Physics, 3(6), 422–440, (2021).

[15] Naman Khetan, Tushar Arora, Samee Ur Rehman, and Deepak K
Gupta, ‘Implicit equivariance in convolutional networks’, arXiv
preprint arXiv:2111.14157, (2021).

[16] Michael Laskin, Aravind Srinivas, and Pieter Abbeel, ‘Curl: Con-
trastive unsupervised representations for reinforcement learning’, in In-
ternational Conference on Machine Learning, pp. 5639–5650. PMLR,
(2020).

[17] Misha Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel,
and Aravind Srinivas, ‘Reinforcement learning with augmented data’,
Advances in Neural Information Processing Systems, 33, (2020).

[18] Yijiong Lin, Jiancong Huang, Matthieu Zimmer, Yisheng Guan, Juan
Rojas, and Paul Weng, ‘Invariant transform experience replay: Data
augmentation for deep reinforcement learning’, IEEE Robotics and Au-
tomation Letters, 5(4), 6615–6622, (2020).

[19] Michael L Littman, ‘Markov games as a framework for multi-agent
reinforcement learning’, in Machine learning proceedings 1994, 157–
163, Elsevier, (1994).

[20] Yong Liu, Weixun Wang, Yujing Hu, Jianye Hao, Xingguo Chen, and
Yang Gao, ‘Multi-agent game abstraction via graph attention neural
network’, in Proceedings of the AAAI Conference on Artificial Intel-
ligence, volume 34, pp. 7211–7218, (2020).

[21] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor
Mordatch, ‘Multi-agent actor-critic for mixed cooperative-competitive
environments’, arXiv preprint arXiv:1706.02275, (2017).

[22] Guozheng Ma, Zhen Wang, Zhecheng Yuan, Xueqian Wang, Bo Yuan,

and Dacheng Tao, ‘A comprehensive survey of data augmentation in vi-
sual reinforcement learning’, arXiv preprint arXiv:2210.04561, (2022).

[23] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle
Lu, Kier Storey, Miles Macklin, David Hoeller, Nikita Rudin,
Arthur Allshire, Ankur Handa, et al., ‘Isaac gym: High perfor-
mance gpu-based physics simulation for robot learning’, arXiv preprint
arXiv:2108.10470, (2021).

[24] Francesco Mondada, Michael Bonani, Xavier Raemy, James Pugh,
Christopher Cianci, Adam Klaptocz, Stephane Magnenat, Jean-
Christophe Zufferey, Dario Floreano, and Alcherio Martinoli, ‘The e-
puck, a robot designed for education in engineering’, in Proceedings
of the 9th conference on autonomous robot systems and competitions,
volume 1, pp. 59–65. IPCB: Instituto Politécnico de Castelo Branco,
(2009).

[25] Igor Mordatch and Pieter Abbeel, ‘Emergence of grounded com-
positional language in multi-agent populations’, arXiv preprint
arXiv:1703.04908, (2017).

[26] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Far-
quhar, Jakob Foerster, and Shimon Whiteson, ‘Qmix: Monotonic value
function factorisation for deep multi-agent reinforcement learning’,
in International Conference on Machine Learning, pp. 4295–4304.
PMLR, (2018).

[27] B. Ravindran and A. G. Barto, ‘Symmetries and model minimization in
markov decision processes’, Technical report, USA, (2001).

[28] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor, ‘Air-
sim: High-fidelity visual and physical simulation for autonomous vehi-
cles’, in Field and service robotics, pp. 621–635. Springer, (2018).

[29] Rongye Shi, Zhaobin Mo, and Xuan Di, ‘Physics-informed deep learn-
ing for traffic state estimation: A hybrid paradigm informed by second-
order traffic models’, in Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 35, pp. 540–547, (2021).

[30] Rongye Shi, Zhaobin Mo, Kuang Huang, Xuan Di, and Qiang Du, ‘A
physics-informed deep learning paradigm for traffic state and funda-
mental diagram estimation’, IEEE Transactions on Intelligent Trans-
portation Systems, 23(8), 11688–11698, (2022).

[31] Ivan Sosnovik, Michał Szmaja, and Arnold Smeulders, ‘Scale-
equivariant steerable networks’, arXiv preprint arXiv:1910.11093,
(2019).

[32] Elise van der Pol, Herke van Hoof, Frans A Oliehoek, and Max
Welling, ‘Multi-agent mdp homomorphic networks’, arXiv preprint
arXiv:2110.04495, (2021).

[33] Elise van der Pol, Daniel Worrall, Herke van Hoof, Frans Oliehoek,
and Max Welling, ‘Mdp homomorphic networks: Group symmetries in
reinforcement learning’, Advances in Neural Information Processing
Systems, 33, (2020).

[34] Dian Wang, Robin Walters, and Robert Platt, ‘SO(2)-equivariant rein-
forcement learning’, arXiv preprint arXiv:2203.04439, (2022).

[35] Maurice Weiler, Fred A Hamprecht, and Martin Storath, ‘Learning
steerable filters for rotation equivariant cnns’, in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp.
849–858, (2018).

[36] Maurice Weiler, Fred A Hamprecht, and Martin Storath, ‘Learning
steerable filters for rotation equivariant cnns’, in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp.
849–858, (2018).

[37] Denis Yarats, Ilya Kostrikov, and Rob Fergus, ‘Image augmentation is
all you need: Regularizing deep reinforcement learning from pixels’, in
International Conference on Learning Representations, (2020).

[38] Zhenhui Ye, Yining Chen, Xiaohong Jiang, Guanghua Song, Bowei
Yang, and Sheng Fan, ‘Improving sample efficiency in multi-agent
actor-critic methods’, Applied Intelligence, 1–14, (2021).

[39] Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen,
and Yi Wu, ‘The surprising effectiveness of ppo in cooperative, multi-
agent games’, arXiv preprint arXiv:2103.01955, (2021).

[40] Xin Yu, Wenjun Wu, Pu Feng, and Yongkai Tian, ‘Swarm inverse rein-
forcement learning for biological systems’, in 2021 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM), pp. 274–279.
IEEE, (2021).

[41] Martin Zinkevich and Tucker Balch, ‘Symmetry in markov decision
processes and its implications for single agent and multi agent learn-
ing’, in In Proceedings of the 18th International Conference on Ma-
chine Learning. Citeseer, (2001).

	Introduction
	Related work
	Data augmentation in RL
	Integrating inductive bias into network

	Background
	Group and transformations
	Equivariance and invariance
	Multi-agent proximal policy optimization

	Problem statement
	Cooperative markov game
	Symmetry markov game

	Methods
	Symmetry augmentation
	Symmetry consistency loss
	Algorithm description

	Experiments
	Environmental setting
	Main results
	Ablation study
	Comparison with network design method

	Demonstration on robots
	Conclusions

