
AdaptAUG: Adaptive Data Augmentation Framework for Multi-Agent
Reinforcement Learning

Xin Yu1, Yongkai Tian1, Li Wang2, Pu Feng1, Wenjun Wu2, and Rongye Shi2,*

Abstract— Multi-agent reinforcement learning has emerged
as a promising approach for the control of multi-robot systems.
Nevertheless, the low sample efficiency of MARL poses a
significant obstacle to its broader application in robotics. While
data augmentation appears to be a straightforward solution
for improving sample efficiency, it usually incurs training
instability, making the sample efficiency worse. Moreover,
manually choosing suitable augmentations for a variety of tasks
is a tedious and time-consuming process. To mitigate these
challenges, our research theoretically analyzes the implications
of data augmentation on MARL algorithms. Guided by these in-
sights, we present AdaptAUG, an adaptive framework designed
to selectively identify beneficial data augmentations, thereby
achieving superior sample efficiency and overall performance
in multi-robot tasks. Extensive experiments in both simulated
and real-world multi-robot scenarios validate the effectiveness
of our proposed framework.

I. INTRODUCTION
Multi-agent reinforcement learning (MARL) has gained

considerable attention as an effective approach for control-
ling multi-robot systems [1]. The technique holds substan-
tial promise in various applications such as autonomous
navigation and cooperative exploration [2]. However, one
significant drawback of applying MARL in these scenarios
is its low sample efficiency, a limitation that hampers its
broader implementation in real-world [3], [4].

Improving the sample efficiency of MARL algorithms
through data augmentation appears to be an intuitively
straightforward approach [5]. However, the stability of RL
algorithms can be compromised when data augmentation
is applied in a naive manner [6]. This issue is further
exacerbated in MARL, as the number of agents increases,
training instability becomes more pronounced [7]. Moreover,
different reinforcement learning tasks may demand special-
ized types of data augmentation for optimal performance [6].
Current methods for selecting suitable augmentations are far
from ideal: they either rely on expert knowledge, which may
not be universally available or applicable [8], or they involve
evaluating a broad spectrum of transformations to identify
the most effective ones [9]. Both approaches come with their
own limitations, such as inefficiency or the risk of suboptimal
selection.

Given the low data efficiency in MARL, enhancing the
feasibility of data augmentation becomes imperative. A
desirable attribute for applying data augmentation would
be to ensure a stable training process. Motivated by this,

1School of Computer Science and Engineering, Beihang University,
Beijing, China.

2Institute of Artificial Intelligence, Beihang University, Beijing, China.
*Corresponding author: Rongye Shi (shirongye@buaa.edu.cn).

Obstacle

Predator

Prey

Original RotatedFlipped

……

Obstacle

Predator

Prey

Available Augmentation Methods

Obstacle

Predator

Prey

How to Choose the Appropriate Augmentation Methods?

Fig. 1: Data Augmentation Techniques in MARL: This figure
displays the original data along with its y-axis flipped and π

2
rotated versions. This paper aims to automate the selection
of suitable augmentation techniques for a specific task.

we introduce the concept of Augmentation Sensitivity to
evaluate the impact of different augmentation methods on
current policy. Theoretical analysis shows that minimizing
the Augmentation Sensitivity leads to reduced algorithmic
error.

Inspired by these findings, we propose AdaptAUG, an
adaptive data augmentation framework specifically designed
for MARL. AdaptAUG selects suitable data augmentation
methods during the training of MARL by balancing both
reward metrics and a new metric, the Augmentation Sensi-
tivity. To tackle this trade-off, we employ the Multi-Objective
Multi-Armed Bandit algorithm[10]. In this setup, each arm
corresponds to a different data augmentation technique.
As training progresses, AdaptAUG continuously pulls these
arms to learn the trade-offs between competing objectives,
eventually identifying an appropriate set of data augmenta-
tions. This enhances the training process, resulting in both
improved data efficiency and final performance metrics. Our
approach enables the intelligent selection of the most ben-
eficial augmentations for any given task, thereby increasing
the stability of training and the quality of task performance.

We validate our approach on various multi-agent tasks,
such as pursuit-evasion, cooperative navigation, and for-
mation change. Our results demonstrate that AdaptAUG is
highly effective in identifying beneficial augmentations, often
performing comparably or better than the most effective
manual augmentations. Moreover, AdaptAUG outperforms
baseline methods both in training and in real-world testing
scenarios.

The contributions of this paper are summarized as follows:

• We introduce the concept of the Augmentation Sen-

sitivity, a metric for assessing the impact of data
augmentation methods on the current policy. Through
theoretical analysis, we show that minimizing this leads
to reduced algorithmic error.

• Motivated by the theoretical analysis, we propose Adap-
tAUG, a novel adaptive data augmentation framework
designed specifically for MARL. AdaptAUG not only
improves the data efficiency of MARL algorithms but
also ensures stable training.

• Through empirical validation on multiple multi-agent
tasks, AdaptAUG demonstrates competitive or superior
sample efficiency and convergence reward. Additionally,
we validate the effectiveness of our learned policies
in real-world robotic environments, showing improved
sim-to-real transfer capabilities.

II. RELATED WORK

A. Data Augmentation in Single-Agent RL

Data augmentation has found broad application in com-
puter vision, notably in supervised and self-supervised learn-
ing, and has recently shown potential in contrastive learning
across various tasks [8], [11], [12], [13], [14]. In robotics,
domain randomization serves as a specialized form of data
augmentation, facilitating the transition of reinforcement
learning policies from simulations to real-world applications,
although it often requires a physics simulator [15], [16].
While recent work has delved into data augmentation in
reinforcement learning, most strategies are fixed and lack
dynamic adaptability, often being borrowed from supervised
learning settings [17]. Some work has explored the effects
of various data augmentations in offline RL but did not
dynamically choose the augmentation methods [18]. In con-
trast, our work uniquely focuses on dynamically selecting
the optimal subset of augmentations from a predefined set,
ensuring algorithmic stability throughout the process.

B. Data Augmentation in Multi-Agent RL

Data augmentation has been less extensively studied in
the context of MARL, with the primary focus being on the
exchange invariance of homogenous groups to facilitate pa-
rameter sharing [7]. Another category of data augmentation
in MARL utilizes rotational symmetries and employs sym-
metry loss functions to assist [19]. Similar to single-agent
settings, domain randomization also serves as a unique form
of data augmentation when applying reinforcement learning
to multi-robot systems [20]. However, existing approaches
generally exploit single properties without examining the
cumulative effects of multiple augmentation techniques on
MARL algorithms. Moreover, there’s a lack of research
exploring adaptive data augmentation in MARL contexts.
As depicted in Figure 1, facing different scenarios, it is
difficult to know which augmentation method can achieve the
best results. Besides, existing literature has primarily focused
on empirical studies, leaving the theoretical impact of data
augmentation on MARL algorithms less explored.

III. PRELIMINARIES

A. Cooperative Markov Game

We model the multi-agent cooperative problem as a
cooperative Markov game [21]. An n-agent cooperative
Markov game is formally represented by a tuple M =
(N,S,{Ai}n

i=1,R,T). Here, N signifies the set of agents, S
represents the state space, and Ai denotes the action space
for agent i, where i ranges from 1 to n. The joint action
space is denoted as A = A1 × A2 × ·· · × An. T : S× A×
S → [0,1] is the transition function. At time step t, each
agent then takes an independent action (a1, . . . ,aN) based
on its individual policy. Then, the environment emits the
bounded joint reward R and moves to the next state st+1. The
agents aim to maximize the expected joint return, defined
as Eπ [∑

∞
t=0 γ tR(st ,at)], where γ is the discount factor, by

selecting actions according to the policy πi : S×Ai→ [0,1].
The initial states are determined by a distribution η : S→
[0,1].

IV. THEORETICAL ANALYSIS FOR DATA AUGMENTATION

To investigate which types of data augmentation are suit-
able, this section provides an analysis of data augmentation
in the context of MRAL.

Definition 1 (Optimality Augmentation): Given a cooper-
ative Markov game M, we define the state transformation and
action transformation as L f : S→ S and K f : A→ A respec-
tively, where f is a certain transformation. Transformation
L f and K f are the Optimality Augmentation if ∀s ∈ S,a ∈ A,
satisfies:

Q(s,a) = Q(L f [s],K f [a])

π(a | s) = π(K f [a] | L f [s]).
It has been proven that training RL using Optimality

Augmentation does not introduce additional errors.[5]. For
state-action pairs (s,a), we denote the augmented state-action
pairs as (f s, f a) where f s = L f (s) and f a = K f (a) for short.

Definition 2 (Augmentation Sensitivity): Given an aug-
mentation function f , the augmentation sensitivity of a policy
π is defined as:

ε
f

π = sup
s∈S

∆(π(· | s)∥π(· | f s)) (1)

where ∆(µ,ν) = 1
2 ∑a∈A |µ(a)−ν(a)| measures the distance

between two probability distributions.
Based on the definition provided, we propose that a lower

augmentation sensitivity for a given augmentation results in
a more precise bound on Q-value estimation during data
augmentation.

Proposition 1: Consider a cooperative Markov game M,
a policy π and transformation f . For ∀a ∈ A,∀s ∈ S, the
following inequality holds:

|Qπ(s,a)−Qπ(f s, f a)| ≤ 2Rmax
ε

f
π +1
1− γ

. (2)

We denote the bound of reward as Rmax. The proof for
Proposition 1 is provided in detail within the Appendix1.

1Video demonstrations and appendix are available at the project website
https://xinyu-site.github.io/AdaptAUG/.

Agent 1

Agent 2

Agent 3

Agent 1

Agent 3

Agent 2

Multi-Objective
UCB

Objective 2 :
Reward

Objective 1 :
Augmentation

 sensitivity

Relplay
 Buffer

Train

...

... Policy
 Network

 Value
Network

Agent 1

Agent 3

Agent 2

Store

Agent Network

Fig. 2: Illustration of the proposed AdaptAUG framework. The framework calculates two objective vectors for each
augmentation method f k. By balancing these objectives, AdaptAUG selects an augmentation to apply to the original data.
Both the augmented and original data are then stored in the replay buffer for training the agent network.

V. METHODS

This paper focuses on solving the following problem: How
to choose appropriate augmentation methods to enhance
the performance of MARL in a specific task? We introduce
a general framework called Adaptive Data Augmentation
(AdaptAUG) for selecting augmentation methods. The Adap-
tAUG framework is illustrated in Figure 2.

A. Data Augmentation Policy

In our research, we consider two criteria for selecting data
augmentation techniques. Firstly, based on Proposition 1,
we prefer techniques with lower sensitivity to ensure more
precise Q-value estimation. Such techniques also enhance
algorithmic stability, as outlined in [automatic]. Secondly, it
is crucial that these augmentations are designed to optimize
the reinforcement learning (RL) reward. To address this dual-
objective selection challenge, we adopt the framework of
Multi-Objective Multi-Armed Bandit [10], [22]. Within this
framework, each ’arm’ symbolizes a distinct data augmen-
tation strategy. Our AdaptAUG framework systematically
explores various strategies to balance the two objectives,
continuously evaluating the trade-offs between enhancing Q-
value accuracy and maximizing RL reward.

Multi-Objective UCB. The Multi-Objective UCB frame-
work utilizes a set of ’arms’ F = { f 1, . . . , f |F |}, with |F |
denoting the number of data augmentations. Each arm k
is associated with an expectation vector µk = [µk

1 , . . . ,µ
k
N],

representing its expected performance across N objectives.
This vector reflects the anticipated outcomes for each aug-
mentation strategy. The UCB’s action space encompasses
the suite of available transformations, enabling informed
strategic decisions based on these expectations.

Objective Vector. Our framework integrates Multi-
Objective UCB into the RL training process to optimize
data augmentation selections. The first objective aims to
select augmentations characterized by lower sensitivity. The
estimated expectation for objective 1, specific to arm k, is

then calculated as follows:

µ
k
1 = sup

s∈S
∆(π(a | s)∥π(f ka | f ks)). (3)

The second objective aims to select augmentation methods
that yield higher RL rewards. For each f k, We maintain a
queue to store the rewards obtained from the most recent L
selections. These rewards are then used to estimate µk

2 by:

µ
k
2 =

1
L

L

∑
i=0

Rk
i (4)

where Rk
i represents the reward obtained at the i-th selection

of the augmentation f k. This estimate is calculated as a
sliding window average of the rewards.

Augmentation Selection.The AdaptAUG framework be-
gins by playing each augmentation method once to collect
initial data. For each iteration t and each arm k, we calcu-
late a term that combines the estimated expectation vector
µ̂

k(t) with a confidence interval. The term is expressed as

µ̂
k(t)+

√
2ln t 4
√

N|F |
Ct (f k)

, where Ct(f k) is the number of times

transformation f k has been selected before time step t. After
these calculations, we establish a Pareto optimal set F∗t to
select an augmentation method randomly. The Pareto optimal
set F∗t includes h ∈ F if and only if there does not exist any
f k ∈ F such that:

µ̂
k(t)+

√
2ln t 4

√
N|F |

Ct(f k)
> µ̂

h(t)+

√
2ln t 4

√
N|F |

Ct(f h)
. (5)

This means that no arm outperforms f h across all objectives.
Once the Pareto optimal set F∗t is obtained, we proceed
with the following steps. First, we randomly select a data
augmentation method from F∗t . Next, we update the agent’s
policy and value network using the MARL algorithm. Sub-
sequently, we collect rollouts using the newly updated policy
to gather data. Then we update the estimated µ̂

h(t). Finally,
the counter Ct(f h) is incremented to Ct(f h) =Ct−1(f h)+1.

B. Data Augmentation for MARL

In contrast to data augmentation techniques commonly
employed in the field of computer vision, those in reinforce-
ment learning often consider both states and actions. To our
knowledge, there is limited research on data augmentation
methods in the context of MARL [8]. This section introduces
multiple data augmentation approaches specifically designed
for MARL. we use s(i)t to represent the ith dimension of the
state vector at time t. Additionally, ŝt is used to denote the
augmented state. The hyperparameters for the augmentation
methods used in this paper are provided below. Other pa-
rameters are also viable.

1) Rotation Augmentation: In multi-agent scenarios
where spatial symmetry is prevalent, simultaneous ro-
tation of both state and actions can yield additional
training samples [5]. The augmented state is given
by ŝt ← Rotate(st ,θ), where θ specifies the angle of
rotation. We choose θ = π

2 for the remainder of this
paper, though other angles can be considered based on
specific circumstances.

2) Flip Augmentation: In scenarios where certain dimen-
sions of the state can be meaningfully flipped, this
augmentation applies ŝt← Flip(st ,d), where d specifies
the axis to be flipped. We choose the y axis to make
the augmentation.

3) Zero-mean Gaussian Noise: The augmented state ŝt
is given by ŝt ← st + ε , where ε is sampled from a
zero-mean Gaussian distribution with variance σ . We
set σ = 0.2.

4) Zero-mean Uniform Noise: This augmentation adds
zero-mean uniform noise to the state, formulated as
ŝt ← st + ε , where ε is sampled from a uniform
distribution U(−α,α). Here, we set α = 0.2 to define
the range of the noise.

5) Amplitude Scaling: This augmentation scales a ran-
dom dimension d of the state s(d)t by a random factor
εd , with εd ∈U(0.5,1.5). The augmented state in this
dimension is ŝ(d)t = s(d)t × εd .

6) Dimension Dropout: To simulate potential sensor
malfunctions, this augmentation sets one randomly se-
lected dimension i to zero. Specifically, ŝ(i)t = 0, where
i is sampled uniformly from the available dimensions.
Extending this approach to zero multiple dimensions
is also feasible.

7) State-switch: This method swaps two randomly se-
lected dimensions i and j within the state vector st
to create ŝt . The augmented state is computed as
ŝ(i, j)t = s(j,i)

t . The aim is to simulate the uncertainty of
complex environments and to enhance data diversity.

8) Mix-up: The augmented state is computed as ŝt =
λ st +(1− λ)st+1, where λ is a weight that controls
the degree of mixing between the two states. We set
λ = 0.5 in the rest of this paper.

The data augmentation techniques introduced in this section
demonstrate various methods to enhance algorithm perfor-
mance and robustness in MARL.

Algorithm 1 AdaptAUG

Input: Set of transformations F = { f 1, . . . , f |F |}, window
length L, number of updates T .

1: Initialize the agent networks.
2: For all f k ∈ F , initialize Ct(f k) = 1, µ̂k(t) = [0, . . . ,0].
3: Initialize an empty queue with length L for each aug-

mentation to store the RL returns.
4: Play each arm once to gather initial data.
5: for t = 1, . . . ,T do

6: For all f k ∈ F , compute µ̂
k(t)+

√
2ln t 4
√

N|F |
Ct (f k)

7: Find set F∗t and select an augmentation f h ∈ F∗t
8: Update the agent network according to MARL.
9: Update the estimated µ̂

h(t) using equation (3) and (4)

10: Ct(f h)←Ct−1(f h)+1
11: end for

C. Algorithm Description

The AdaptAUG algorithm is designed to optimize data
augmentation strategies within a reinforcement learning
framework as shown in algorithm 1. It begins by initializing
agent networks and setting up a confidence score and an
estimated performance vector for each data transformation.
An essential feature of AdaptAUG is its iterative process,
where it systematically evaluates each augmentation tech-
nique over T updates. At each iteration, the algorithm calcu-
lates an exploration term for each transformation, balancing
the need to explore new strategies with the exploitation of
known ones. This is achieved by adjusting the estimated
performance vector µ̂

k(t) with a dynamic exploration bonus,
encouraging the selection of less-explored yet potentially
rewarding augmentations. The selected augmentation, f h, is
then applied, and the agent network is updated according to
MARL algorithm. Performance estimations are refined based
on the outcomes of these calculations, ensuring the algorithm
progressively focuses on the most effective augmentation
strategies. This cycle of selection, application, and update
continues until all T updates are completed, culminating
in an optimized augmentation framework designed to boost
learning efficiency and effectiveness.

VI. EXPERIMENTS

A. Experimental Settings

The proposed framework was applied to several
mainstream algorithms, including MAPPO, MADDPG,
QMIX [23], [24], [25]. All experiments have been imple-
mented using Python 3 on a computer with an i7-13700KF
CPU, 64GB RAM, and an Nvidia RTX 4080 GPU. To
account for variability and ensure statistical significance,
each experiment was repeated across 10 distinct random
seeds. We carried out experiments across various tasks,
namely Predator-Prey, Cooperative Navigation, and Forma-
tion Change, as depicted in Figure 3.

TABLE I: Episode rewards for AdaptAUG and the baseline algorithms are presented across three tasks. In the table, ’AUG’
represents the algorithm implemented within the AdaptAUG. The terms 500k and 3000k indicate the number of training
steps taken by the algorithms. Error bars represent the standard error of the mean, calculated over 10 random seeds.

Task Steps
Algorithms

MADDPG MADDPG-AUG QMIX QMIX-AUG MAPPO MAPPO-AUG

Predator
Prey

500k 60.57±10.84 83.33±6.98 41.91±7.17 60.42±5.36 32.22±5.7 47.09±6.0
3000k 87.83±8.08 90.45±6.51 53.02±6.91 57.68±5.56 33.56±7.3 58.24±6.61

Cooperative
Navigation

500k -142.28±3.75 -129.48±1.81 -152.34±3.14 -138.8±1.5 -130.51±2.01 -119.79±1.88
3000k -120.78±4.92 -111.97±2.15 -122.26±4.23 -113.09±1.44 -123.52±1.96 -111.28±1.13

Formation
Change

200k -42.87±13.62 -40.45±10.53 50.97±18.7 53.36±14.44 126.05±12.69 164.01±14.51
1000k -40.01±10.47 -43.51±11.12 51.77±18.56 59.37±16.58 142.43±18.56 170.97±11.56

Obstacle

Predator

Prey

(a) Predator-Prey

Obstacle
Target

Agent

(b) Navigation

Epuck

(c) Formation change

Fig. 3: Schematic diagrams of the three simulated tasks
employed in our experiments to evaluate the framework.

Predator-Prey. This is a well-known scenario, imple-
mented in [26], where collaborating agents aim to capture
prey. A reward is allocated to predators at each time step
if any of them occupies the same space as the prey. Figure
3a showcases the Predator-Prey task. In this scenario, we
configure three predators and one prey.

Cooperative Navigation. This scenario implemented
by [26], requires agents to navigate towards target landmarks
while avoiding inter-agent collisions. At the beginning of
each episode, agents and landmarks are randomly positioned.
A standard setup involving three agents for this task is illus-
trated in Figure 3b. In this task, we deploy three agents with
the objective of reaching three landmarks while minimizing
collisions.

Formation Change. As depicted in Figure 3c, all robots
initiate in a square formation, aiming to reach their desig-
nated positions on the opposite side. The task employs the
E-puck in the open-source Webots simulator [27]. E-pucks
are trained to circumvent each other while coordinating to
reach their destinations. We set up 8 E-pucks in the task.

B. Main Results

We primarily report the reward at two key stages during
training: the early stage of training (500k) and the con-
vergence reward (3000k). The early-stage reward serves as
an indicator of sample efficiency to some extent, while the
3000k reward reflects the convergence performance.

Predator-Prey Task: As demonstrated in Table I, our
proposed AdaptAUG framework significantly outperforms
the baseline methods, including a substantial improvement

over MAPPO. This indicates that AdaptAUG can improve
both data efficiency and convergence reward.

Cooperative Navigation Task: The reward during train-
ing for this task is presented in Table I. Our framework
demonstrates a distinct advantage in enhancing data ef-
ficiency, resulting in faster convergence to higher reward
values compared to baseline methods.

Formation Change Task: To assess the efficacy of our
method in more complicated tasks, we conducted experi-
ments on a multi-robot formation change task in the Webots
simulator, as illustrated in Figure 3c. Experimental results
demonstrate that MADDPG and QMIX fail to learn useful
policies in this task, whereas agents trained with MAPPO-
AUG and MAPPO manage to reach the goals while avoiding
collisions and obstacles. As shown in Table I, MAPPO
augmented by our proposed framework yields higher rewards
compared to its original version, indicating that our approach
effectively enhances the performance of data augmentation
in challenging environments.

C. Data Augmentations for Each Task

The experimental outcomes are summarized in Table II,
where rotation involved a π

2 clockwise adjustment, and
flipping was executed along the y-axis. Further details on
hyperparameters can be found in Section V.B. This table
presents the average of the final converged rewards, with
”Normal” indicating the baseline performance without any
data augmentation. The experimental results indicate that
in the Cooperative Navigation and Predator-Prey tasks, Ro-
tation, Flip, and MixUp positively impact the algorithm’s
performance. This is because Rotation and Flip satisfy the
condition of Optimality Augmentation, thereby introducing
no additional error. MixUp creates new data points by
blending existing ones, thereby enhancing the algorithm’s
robustness. On the other hand, other augmentation methods
disrupt the sample distribution to some extent and thus
can have negative effects. For the Formation Change task,
we found that our Rotation, MixUp, and Gaussian Noise
methods were effective. This phenomenon may be attributed
to the Webots simulation environment’s realistic nature. Its
inherent dynamics already include a level of noise, so adding
noise to the samples can indeed improve robustness.

TABLE II: Investigating the importance of different augmentation schemes in MARL. We train policy using different
augmentation schemes and report the mean normalized scores over 10 random seeds. To make the table easier to read we
color the best algorithm on a task in deep blue, the second best in deep brown, and the third best in deep green.

Task Algorithm
Augmentations

Normal Rotation Flip Gaussian Uniform Amp Dropout Switch MixUp AdaptAUG

Predator
Prey

MADDPG 87.83 89.90 89.83 86.71 87.63 82.53 84.13 83.73 90.33 90.45
QMIX 53.02 54.01 55.07 52.42 51.71 48.12 48.82 49.02 54.72 57.68

MAPPO 33.56 42.76 45.56 36.16 32.56 29.16 29.36 31.56 43.76 58.24

Cooperative
Navigation

MADDPG -120.78 -115.78 -117.78 -121.89 -125.84 -125.78 -123.78 -122.78 -115.88 -111.97
QMIX -122.26 -117.16 -113.56 -123.81 -125.30 -126.27 -125.35 -126.29 -118.16 -113.09

MAPPO -123.52 -118.31 -117.02 -116.62 -121.72 -128.62 -129.52 -127.52 -119.52 -111.28

Formation
Change

MADDPG -40.01 -35.07 -41.05 -41.15 -40.71 -44.11 -43.31 -41.71 -42.94 -43.51
QMIX 51.77 56.17 54.27 56.67 48.67 49.71 49.78 47.87 55.77 59.37

MAPPO 142.17 149.43 147.43 143.53 141.33 142. 73 140.21 138.48 151.41 170.97

TABLE III: Output augmentations type for each task.

TASK Algorithm Augmentations

Predator
Prey

MADDPG Rotation+Flip+MixUp
QMIX Rotation+Flip+MixUp

MAPPO Rotation+Flip+MixUp

Cooperative
Navigation

MADDPG Rotation+Flip+MixUp
QMIX Rotation+Flip+MixUp

MAPPO Rotation+Flip+MixUp

Formation
Change

MADDPG Rotation+MixUp+Gaussian noise
QMIX Rotation+MixUp+Gaussian noise

MAPPO Rotation+MixUp+Gaussian noise

The augmentation methods ultimately chosen by our
framework are listed in Table III. From the experimental
results, it can be observed that the augmentation methods
which individually yield positive impacts on the algorithm,
as listed in Table II, are also frequently selected by our
framework. This further validates the effectiveness of our
approach. Additionally, it’s noteworthy that different tasks
converge to different augmentation combinations.

D. Real-World Evaluation

To empirically validate the efficacy of our framework,
we employed a straightforward sim-to-real approach [28],
deploying policies directly trained in Webots simulation onto
actual E-puck robots. The experiments were conducted in a
2m x 2m indoor area and utilized motion capture systems for
accurate localization. Our results demonstrate a substantial
improvement in MARL performance, specifically reducing
high-risk states (defined as inter-agent distances less than 5
cm) from 8.6% to 5.1%. These findings indicate that our
approach effectively enhances the sim-to-real capabilities of
MARL algorithms. Although our training eventually con-
verged on specific augmentation techniques, the UCB algo-
rithm in the early stages of training attempted to select noise-
based data augmentation methods, which likely contributed
to the improvement in sim-to-real capabilities.

1 32

8

7

4

6 5

Epuck

5 76

4

3

8

2 1

(a) Start points (b) Trajectories

5 76

4

3

8

2 1

(c) End points

Fig. 4: Real-world formation change on a swarm of E-puck
robots. The E-puck robots successfully switched their posi-
tions to the antipodal points by achieving collision avoidance.

VII. CONCLUSIONS

In this paper, we presented AdaptAUG, a theoretically
grounded adaptive data augmentation framework specifically
designed to address the challenges of low sample efficiency
and unstable training in multi-agent reinforcement learning
(MARL). We theoretically show that a lower augmentation
sensitivity for a given augmentation results in a more precise
bound on Q-value estimation during data augmentation for
MARL. The empirical evidence indicates that AdaptAUG
significantly improves performance across a variety of set-
tings, emphasizing its wide applicability and potential in
advancing MARL technology. Moreover, the validation of
our framework on real robotic platforms serves as evidence
of its practical effectiveness, showcasing its adaptability to
real-world scenarios and its promise for deployment in prac-
tical applications. Moving forward, we plan to investigate
the potential applications of our framework in other areas of
reinforcement learning[29], [30].

ACKNOWLEDGMENTS

This work was supported by the National Key Re-
search and Development Program of China (Grant No.
2022ZD0116401), the National Natural Science Foundation
of China (Grant No. 62306023), and the State Key Lab-
oratory of Software Development Environment (Grant No.
SKLSDE-2023ZX-20).

REFERENCES

[1] C. Yu, X. Wang, and Z. Feng, “Coordinated multiagent reinforcement
learning for teams of mobile sensing robots,” in Proceedings of the
18th international conference on autonomous agents and multiagent
systems, 2019, pp. 2297–2299.

[2] B. Singh, R. Kumar, and V. P. Singh, “Reinforcement learning in
robotic applications: a comprehensive survey,” Artificial Intelligence
Review, pp. 1–46, 2022.

[3] F. L. Da Silva and A. H. R. Costa, “A survey on transfer learning
for multiagent reinforcement learning systems,” Journal of Artificial
Intelligence Research, vol. 64, pp. 645–703, 2019.

[4] X. Yu, W. Wu, P. Feng, and Y. Tian, “Swarm inverse reinforcement
learning for biological systems,” in 2021 IEEE International Confer-
ence on Bioinformatics and Biomedicine (BIBM). IEEE, 2021, pp.
274–279.

[5] X. Yu, R. Shi, P. Feng, Y. Tian, J. Luo, and W. Wu, “Esp: Exploiting
symmetry prior for multi-agent reinforcement learning,” in ECAI 2023,
2023, pp. 2946–2953.

[6] R. Raileanu, M. Goldstein, D. Yarats, I. Kostrikov, and R. Fergus, “Au-
tomatic data augmentation for generalization in reinforcement learn-
ing,” Advances in Neural Information Processing Systems, vol. 34, pp.
5402–5415, 2021.

[7] Z. Ye, Y. Chen, X. Jiang, G. Song, B. Yang, and S. Fan, “Improving
sample efficiency in multi-agent actor-critic methods,” Applied Intel-
ligence, pp. 1–14, 2021.

[8] M. Laskin, K. Lee, A. Stooke, L. Pinto, P. Abbeel, and A. Srinivas,
“Reinforcement learning with augmented data,” Advances in Neural
Information Processing Systems, vol. 33, 2020.

[9] K. Cobbe, O. Klimov, C. Hesse, T. Kim, and J. Schulman, “Quan-
tifying generalization in reinforcement learning,” in International
Conference on Machine Learning, 2019, pp. 1282–1289.

[10] M. M. Drugan and A. Nowe, “Designing multi-objective multi-
armed bandits algorithms: A study,” in The 2013 international joint
conference on neural networks (IJCNN). IEEE, 2013, pp. 1–8.

[11] D. Yarats, I. Kostrikov, and R. Fergus, “Image augmentation is all
you need: Regularizing deep reinforcement learning from pixels,” in
International Conference on Learning Representations, 2020.

[12] Y. Lin, J. Huang, M. Zimmer, Y. Guan, J. Rojas, and P. Weng,
“Invariant transform experience replay: Data augmentation for deep re-
inforcement learning,” IEEE Robotics and Automation Letters, vol. 5,
no. 4, pp. 6615–6622, 2020.

[13] F. Amadio, A. Colomé, and C. Torras, “Exploiting symmetries in
reinforcement learning of bimanual robotic tasks,” IEEE Robotics and
Automation Letters, vol. 4, no. 2, pp. 1838–1845, 2019.

[14] M. Schwarzer, A. Anand, R. Goel, R. D. Hjelm, A. Courville, and
P. Bachman, “Data-efficient reinforcement learning with self-predictive
representations,” arXiv preprint arXiv:2007.05929, 2020.

[15] W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-to-real transfer in
deep reinforcement learning for robotics: a survey,” in 2020 IEEE
symposium series on computational intelligence (SSCI). IEEE, 2020,
pp. 737–744.

[16] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-
real transfer of robotic control with dynamics randomization,” in 2018
IEEE international conference on robotics and automation (ICRA).
IEEE, 2018, pp. 3803–3810.

[17] D. Yarats, I. Kostrikov, and R. Fergus, “Image augmentation is all
you need: Regularizing deep reinforcement learning from pixels,” in
International conference on learning representations, 2020.

[18] C. Lu, B. Huang, K. Wang, J. M. Hernández-Lobato, K. Zhang,
and B. Schölkopf, “Sample-efficient reinforcement learning
via counterfactual-based data augmentation,” arXiv preprint
arXiv:2012.09092, 2020.

[19] X. Yu, R. Shi, P. Feng, Y. Tian, S. Li, S. Liao, and W. Wu,
“Leveraging partial symmetry for multi-agent reinforcement learning,”
arXiv preprint arXiv:2401.00167, 2023.

[20] S. Chen, G. Liu, Z. Zhou, K. Zhang, and J. Wang, “Robust multi-agent
reinforcement learning method based on adversarial domain random-
ization for real-world dual-uav cooperation,” IEEE Transactions on
Intelligent Vehicles, 2023.

[21] M. L. Littman, “Markov games as a framework for multi-agent
reinforcement learning,” in Machine learning proceedings 1994, 1994,
pp. 157–163.

[22] A. Durand, C. Bordet, and C. Gagné, “Improving the pareto ucb1 algo-
rithm on the multi-objective multi-armed bandit,” in Workshop of the
27th Neural Information Processing (NIPS) on Bayesian Optimization,
2014.

[23] T. Rashid, M. Samvelyan, C. Schroeder, G. Farquhar, J. Foerster, and
S. Whiteson, “Qmix: Monotonic value function factorisation for deep
multi-agent reinforcement learning,” in International Conference on
Machine Learning, 2018, Conference Proceedings, pp. 4295–4304.

[24] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” arXiv preprint arXiv:1706.02275, 2017.

[25] C. Yu, A. Velu, E. Vinitsky, Y. Wang, A. Bayen, and Y. Wu, “The
surprising effectiveness of ppo in cooperative, multi-agent games,”
arXiv preprint arXiv:2103.01955, 2021.

[26] I. Mordatch and P. Abbeel, “Emergence of grounded com-
positional language in multi-agent populations,” arXiv preprint
arXiv:1703.04908, 2017.

[27] P. Feng, X. Yu, J. Liang, W. Wu, and Y. Tian, “Mact: Multi-agent col-
lision avoidance with continuous transition reinforcement learning via
mixup,” in International Conference on Swarm Intelligence. Springer,
2023, pp. 74–85.

[28] C. De Souza, R. Newbury, A. Cosgun, P. Castillo, B. Vidolov, and
D. Kulić, “Decentralized multi-agent pursuit using deep reinforcement
learning,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp.
4552–4559, 2021.

[29] T. Peng, W. Wu, H. Yuan, Z. Bao, Z. Pengrui, X. Yu, X. Lin, Y. Liang,
and Y. Pu, “Graphrare: Reinforcement learning enhanced graph neural
network with relative entropy,” arXiv preprint arXiv:2312.09708,
2023.

[30] S. Li, J. Guo, J. Xiu, X. Yu, J. Wang, A. Liu, Y. Yang, and X. Liu,
“Byzantine robust cooperative multi-agent reinforcement learning as
a bayesian game,” arXiv preprint arXiv:2305.12872, 2023.

	INTRODUCTION
	RELATED WORK
	Data Augmentation in Single-Agent RL
	Data Augmentation in Multi-Agent RL

	Preliminaries
	Cooperative Markov Game

	Theoretical Analysis for data augmentation
	METHODS
	Data Augmentation Policy
	Data Augmentation for MARL
	Algorithm Description

	Experiments
	Experimental Settings
	Main Results
	Data Augmentations for Each Task
	Real-World Evaluation

	CONCLUSIONS
	References

