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Abstract. Autonomous collision avoidance is a critical component in
various multi-robot applications. While deep reinforcement learning (RL)
has demonstrated success in some robotic control tasks, it remains chal-
lenging to apply it to real-world multi-agent collision tasks due to poor
sample efficiency. The limited amount of transition data available and its
strong correlation with multi-agent task characteristics have restricted
recent research in this area. In this paper, we propose Multi-agent Col-
lision Avoidance with Continuous Transition Reinforcement Learning
via Mixup (MACT) to address these challenges. MACT generates new
continuous transitions for training by linearly interpolating consecutive
transitions. To ensure the authenticity of constructed transitions, we de-
velop a discriminator that automatically adjusts the mixup parameters.
Our proposed approach is evaluated through simulations and real-world
swarm robots consisting of E-pucks, demonstrating its practical applica-
tion. Our learned policies outperform existing collision avoidance meth-
ods in terms of safety and efficiency.

Keywords: Multi-agent Collision Avoidance · Reinforcement Learning
· Continuous Transition. · Data Augmentation

1 Introduction

With the increasing use of unmanned vehicles, mobile robots are becoming more
common for a variety of tasks, including rescue operations, final-mile delivery,
and clustering tasks. However, navigating swarm robots safely and efficiently in
complex and ever-changing real-world environments presents significant coordi-
nation challenges. Unlike single robots, swarm robots must take into account
the movements of other robots in the cluster. To address these challenges, re-
searchers have extensively studied distributed control, which can be categorized
into two main approaches. The first approach is the sensor-based approach, which
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includes methods such as Artificial Potential Field (APF) [7] and Optimal Re-
ciprocal Collision Avoidance (ORCA)[1]. These methods generate policies based
on local observations, but they may fall into local optimum points and have
low efficiency. The second approach is the distributed control method based on
end-to-end reinforcement learning. This approach has shown promise in dealing
with the deadlock problem and achieving better task completion efficiency. Var-
ious researchers have employed reinforcement learning for collision avoidance [3,
2], with these methods typically taking the robot’s own position, velocity infor-
mation, and information from other agents in the surrounding domain as input
to the neural network. However, one of the main challenges with reinforcement
learning is its low sample efficiency.

Efforts have been made to improve sample efficiency in reinforcement learning
(RL) for multi-agent collision avoidance. One method is to use inverse reinforce-
ment learning to model the environment, which more fully utilizes environmental
information [14]. Another classic approach for improving sample efficiency is off-
policy RL, which includes methods such as Deep Deterministic Policy Gradient
(DDPG) [8], Twin Delayed Deep Deterministic Policy Gradient (TD3) [4], and
Soft Actor-Critic (SAC) [5]. These methods collect samples during the training
process and store them in a replay buffer. During policy updates, batch-sized
data (s, a, r, s′, d) are randomly selected from the buffer. Compared to on-policy
methods, off-policy methods reuse collected data and have a higher sample uti-
lization rate. Furthermore, selecting effective data from the replay buffer is also
an important research point to further improve sample efficiency [6]. Priori-
tized sampling methods, which select samples with greater differences for policy
learning, have achieved some improvement. However, these methods analyze the
discrete transitions collected in training for continuous action tasks. Dividing a
segment into several discrete transition pairs still has limited sample efficiency
improvement, as the number of transitions is often small. Transforming the tra-
jectories of a group of agents in obstacle avoidance navigation into continuous
transitions may lead to better performance.

In recent years, data augmentation techniques have achieved tremendous suc-
cess in augmenting data and improving sample efficiency. Various data augmen-
tation methods have been extensively researched and demonstrated to be effec-
tive in computer vision applications. Among them, mixup has gained increasing
attention in recent years. Mixup was first introduced as a way to generate new
training examples by linearly interpolating pairs of randomly selected samples
and their labels [15]. The resulting mixed samples and labels are then used to
train a deep neural network. Since its introduction, mixup has been shown to
improve the performance of various neural network architectures across a range
of tasks, such as image classification, object detection, and natural language
processing. However, most of these strategies have been developed for image in-
puts. To the best of our knowledge, only a few papers have investigated mixup
for single-agent reinforcement learning training [9], and no research has been
conducted on mixup for multi-agent collision avoidance tasks. Therefore, there
is a need for further research to explore the potential of mixup for multi-agent
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collision avoidance tasks, which may improve sample efficiency and enhance the
performance of the trained models.

For multi-agent collision avoidance tasks, as the number of agents increases,
the probability of mutual influence among agents in the field increases. In the
process of heading towards the target point, agents not only are affected by fixed
obstacles but also experience greater interference from other moving agents. This
is similar to the increased driving difficulty on congested roads. In this paper,
we introduce mixup to multi-agent reinforcement learning, where we use the
state-action-reward tuples of the Markov decision process as the object for data
augmentation. We construct continuous transitions between discrete steps using
linear interpolation, where the similarity between continuous states is high, and
action states and rewards are close. Through mixup, we create new transitions
that are likely to exist in the actual transition manifold or are close to it. To make
the transition more consistent with the true manifold, we use interpolation ratios
to measure the relative weights between two consecutive transitions. However,
when the interpolation ratio approaches 0 or 1, the state will degenerate into
the original sample collected in the experiment. The interpolation ratio serves
as a coefficient for adjusting the proportion of different parts of the data. By
changing the value of the ratio, we can make the continuous transitions as close
as possible to the authentic transition manifold. To achieve this, we constructed
an energy discriminator to automatically adjust the value of the ratio.

The contributions of this paper are summarized as follows:

– We propose a novel method named MACT by constructing new continuous
transitions for multi-agent collision avoidance for optimizing the sampling
efficiency and asymptotic performance.

– We construct a multi-agent collision avoidance scenario in the Webots sim-
ulation environment, which is suitable for training. We apply planning al-
gorithms such as APF and reinforcement learning algorithms such as SAC
and validate that the performance of MACT is superior to other algorithms
in Webots.

– We establish a platform using real robots and validate the proposed algo-
rithm in real-world E-puck2 swarms, thus verify the applicability of MACT
in the real-world.

2 Preliminaries

2.1 Problem formulation

In this paper, the multi-agent collision avoidance problem is formulated in the
context of a nonholonomic differential drive robot moving on the Euclidean plane
and avoiding collision with obstacles and other neighbor robots.

To tackle this problem, we assume all robots in this task are homogeneous.
To be specific, all of N agents are modelled as the agents with the same radius
R and same max velocity Vmax. Each robot i has access to its observation that
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only provides partial information of the environment and then according to its
policy, computes a collision-free action ai to drive itself towards the target gi.

at ∼ πθ

(
at | ot

)
, (1)

In our experiment, θ denotes the policy parameters, and the computed action
at is a vector representing the left and right wheel speed of the E-puck2 mobile
car. Each robot sequentially makes its decision until it reaches its target, and
robots cannot access the states and targets of other robots, which is in line with
the real-world scenario. In the initial task setting, robots are placed at the edge
of the environment and assigned a goal on the opposite side.

2.2 Mixup

MixUp [15] is a data-augmentation strategy originally developed for image clas-
sification. In essence, MixUp improves the training of deep learning models by
creating synthetic samples through linear interpolation of pairs of training sam-
ples and their corresponding labels. Specifically, given a pair of training samples
xi and xj , which consist of input data and their corresponding labels, MixUp
generates synthetic samples by linearly interpolating between the two samples
based on an interpolation ratio ϵ

Mϵ

(
xi, xj

)
= ϵxi + (1− ϵ)xj (2)

where the interpolation ratio ϵ denotes the weights of two samples. The resulting
mixed data is a linear combination of the two original data, while the mixed label
is a linear combination of the two original labels. This process generates a new
training data point that lies on the line connecting the two original data points

3 Methodologies

In the process of training a reinforcement learning algorithm, simulators such
as Webots[11] and MPE (Multi-Agent Particle Environment) [10] are commonly
used to simulate state transitions at regular intervals known as time-steps. As
the duration of these intervals is often quite short, there is typically a strong
continuity between the states of adjacent time-steps. In the multi-agent obstacle
avoidance task, we implement parameter sharing for each agent. Agents explore
the environment to collect new states, and we use the Multi-Agent Continu-
ous Transition (MACT) method to construct previously unknown continuous
transitions.

3.1 Reinforcement Learning Setup

In our research, we present a decentralized partially observable Markov deci-
sion process (Dec-POMDP) as a common framework for multi-agent reinforce-
ment learning. In this context, Dec-POMDPs are represented as a tuple, namely,
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(I, S,A, P,R, r,O, Z, γ). The index set (I = 1, . . . , N) corresponds to the collec-
tion of agents. It is crucial to note that due to the partial observability of the
environment state st, each agent relies on their individual observation oi in ac-
cordance with the local observation function oi,t = Zi (st) : S → O. Every agent
i selects its action based on its policy ai, t ∼ πi (· | Ot). The joint action space

A encompasses the union of all agents’ action spaces
⋃N

i=1 Ai. We introduce a
deterministic transition function T : S×A → S and a discount factor γ ∈ (0, 1).
Assuming the agent policy ri, t = Ri (st,at) is parameterized by θi, the individ-
ual goal of each agent is established as the discounted sum of individual rewards:

Ri(τ) =

tei∑
t=tsi

γt−tsi ri,t

Reward function In the proposed algorithm, we aim to avoid collisions during
navigation and minimize the mean arrival time of all robots. Each agent obtains
its own reward at each time step, which is defined as follows:

rti = (gr)
t
i +

∑
(cr)

t
i (3)

The reward rti received by the robot i at time-step t consist of two terms, in-
cluding gr and cr. In particular, the robot is awarded by (gγ)

t
i for getting closer

to its target:

(gr)
t
i = ωg

(∥∥pt−1
i − gi

∥∥−
∥∥pti − gi

∥∥)+ rarrival (4)

{
rarrival = 0.05 if ∥pti − gi∥ < 0.03m

rarrival = 0 otherwise.
(5)

where pti denotes the position of the robot i at time t, gi denotes the target
position of agent i, and ωg represents the distance reward weight. When the
robot collides with other robots or obstacles in the surrounding environment, it
is penalized by (cr)

t
i:

(cr)
t
i =


ccollision if ∥pti − ci∥ < Ragent +Rcol

or
∥∥pti − ptj

∥∥ < 2Ragent

0 otherwise.

(6)

where ci denotes the position of collision around agent i. We set the reward for
arriving the target point rarrival = 0.05, the weight factor ωg=100, the penalty for
collision ccollision=-0.35, the agent’s influence radius Ragent=0.04, the collision’s
influence radius Rcol=0.11 during the training process.
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Fig. 1: The sketch of the multi-agent collision avoidance transition manifold.

3.2 Multi-agent Continuous Transition

Reinforcement learning (RL) has emerged as a prevalent approach for train-
ing agents to tackle complex tasks. Nevertheless, during the training process, a
pervasive challenge is low training efficiency, primarily due to the performance
constraints of various simulators employed for training, such as Webots [11] and
AirSim [13]. These simulators operate on discrete time intervals for simulation,
yielding discrete transitions that form a complete trajectory. For tasks with con-
tinuous action states, the volume of data accessible for training is considerably
diminished. This issue is further intensified in multi-agent tasks, where state
changes are influenced not only by the agent’s actions but also by the actions
of other agents, leading to an expanded state space that demands broader ex-
ploration and heightened sample efficiency. To tackle this challenge, we suggest
employing off-policy methods, such as SAC and DDPG, which store the gathered
data in a replay buffer and repurpose samples to enhance sample efficiency. In
this paper, we present the mixup method for creating a Multi-agent Continuous
Transition, which supplements authentic transitions with constructed transitions
to bridge gaps between discrete transitions. Our approach offers a solution for
boosting sample efficiency and generating a more comprehensive set of training
data.

To achieve a smooth and uninterrupted progression, we employed mixup lin-
ear interpolation to bridge the gap between two discrete transitions and create
new continuous transitions. The new transitions build upon the foundation of
the original transitions, ensuring that it changes seamlessly along the actual tra-
jectory. Specifically, in the multi-agent obstacle avoidance task, where parameter
sharing is utilized, we constructed continuous transitions T for each agent’s sam-
ple using mixup interpolation. The new transition Mϵ (T1, T2) can be obtained
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as following equation:

Mϵ (T1, T2) = ϵT1 + (1− ϵ)T2, whereϵ ∼ B(β, β) (7)

We utilize the temperature parameter β to adjust the beta distribution. In
continuous control tasks, successive transitions frequently contain similar dy-
namic information, such as position. Consequently, for multi-agent tasks, we
store the continuous samples of each agent separately in the environment and
create independent continuous transitions. However, as the similarity between
samples from different agents is often low, mixup-generated transitions may not
reside within the true transition manifold. As illustrated in Fig. 1, the interpo-
lation of two closely situated transitions is more likely to yield a new transition
(blue dot in the figure) that genuinely exists in the task manifold, whereas the
interpolation (yellow dot in the figure) produced by T2 and T3 is situated out-
side the manifold. To provide two straightforward examples: consider a scenario
where a robot maintains stable forward motion, resulting in relatively consistent
transitions. In this case, the constructed transition is likely to remain within the
task manifold. Conversely, if the robot experiences a collision during its move-
ment, the state changes between transitions may be more substantial, causing
the newly constructed transition to appear outside the manifold.

In the MACT algorithm, the most crucial hyperparameter is the temperature
β of the beta distribution. When β approaches 0, the beta distribution resembles
a 2-point Bernoulli distribution, and as β approaches 1, it converges towards
the uniform [0, 1] distribution. Following the insights from [9], we observe a
positive correlation between the expected distance of continuous transitions and
authentic transitions manifold with the value of β. To maintain the distance
between two transitions below the tolerance threshold M , we can adjust the β
accordingly.

An energy-based discriminator is employed to estimate the distance. We uti-
lize a Multilayer Perceptron (MLP) fϕ, parameterized by ϕ, to encapsulate the
information of state st and action at. We denote (st, at) as xt and (st+1, rt, dt)
as yt. Consequently, the distance estimator D(Tt) can be expressed as follows:

D (Tt) = ∥E (xt, yt)∥ = ∥fϕ (st, at)− yt∥22 (8)

The discriminator is enhanced by optimizing ϕ to minimize Equation 8.
The new transition can be represented as x′

t and y′t. By incorporating the con-
structed new transition Mϵ (Tt, T t+ 1) into the estimator, we can compute the
loss between the current D and the actual discrete transitions E(xt, yt) and
E(xt+1, yt+1). By constraining the loss (calculated using Equation 9) within the
tolerance range M, we transform the problem into a constrained optimization
problem.

Loss (Mϵ (Tt, Tt+1)) = ∥E(x′
t, y

′
t)−Mϵ (E(xt, yt), E(xt+1, yt+1))∥

2
2 (9)

Formally, we can solve the constrained optimization problem to optimize the β,
as shown in Equ. 10.
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Fig. 2: Multi-robots collision avoidance scenario: Each agent is placed around the
field, and the target point is set on the opposite side of the field. The agent aims
to go to the target point in the shortest time while avoiding static obstacles and
other agents.

maxβ, s.t. E [Loss (Mϵ (Tt, Tt+1))] ≤ M, 0 < β ≤ 1
where ϵ ∼ B(β, β) (10)

4 Experiments

In this study, our primary focus is on multi-agent navigation within confined
spaces containing swarm agents and static obstacles, a scenario that is antici-
pated to become increasingly prevalent in the practical applications of UAVs and
unmanned vehicles. Each agent is positioned around the field, with the target
point set on the opposite side of the field. The agents strive to reach the tar-
get point in the shortest possible time while evading static obstacles and other
agents, as depicted in Fig. 2. In this section, we conduct simulations and experi-
ments to showcase the effectiveness of the proposed MACT algorithm. Through
these simulations, we verify the benefits of MACT by comparing it with APF
[7], ORCA [1], SAC [5], and PPO [12]. ORCA and APF represent two state-of-
the-art traditional planning methods.

4.1 Simulation

We train our methods using Webots, a three-dimensional simulation platform.
We configure E-puck2 robots, obstacles, and destinations as depicted in Fig.
2. In the simulation environment, we establish a 2m x 2m area, mirroring the
real-world environment dimensions, and place five cylinders as static obstacles
with a radius of 0.1m. Corresponding to the real vehicle, we employ the E-puck2
model as the agent in Webots. The E-puck2 robot has a diameter of 0.08m
and a maximum speed of 0.14m/s. The action space of MACT is continuous
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Fig. 3: The evaluate reward of 10 agents task

and represents the speed of both wheels. Each episode runs for a maximum of
1000 steps. We consider a collision to occur when agents come within 0.08m of
other agents or within 0.15m of obstacles. We conducted experiments in a dense
environment with 5 and 10 agents. In the task involving five agents, we observed
that both traditional methods and reinforcement learning methods were effective
in completing the task and achieving satisfactory policy performance due to the
relatively low task difficulty.

As shown in Fig. 3, the task becomes increasingly challenging as the number
of agents grows. Under this reward function design, MACT exhibits superior
performance compared to planning methods. MACT is capable of learning a
more effective policy when facing difficult task scenarios. Additionally, MACT
demonstrates faster sample efficiency and higher reward returns compared to
reinforcement methods such as SAC and PPO.

As shown in Table 1, all methods perform well in the task involving 5 agents,
which has a lower difficulty level. However, in the more challenging task with 10
agents in a limited area, reinforcement learning methods SAC and PPO are more
likely to encounter dangerous states. The APF and ORCA algorithms exhibit
excellent safety and rarely collide, but the task requires a larger number of steps
and a longer distance to be completed due to frequent stalemates. As seen in
Fig. 4, MACT outperforms both reinforcement learning and planning methods
in terms of travelled distance and success rate. It achieves better performance in
the challenging task of 10 agents, demonstrating its effectiveness in improving
multi-agent collision avoidance.

4.2 Real World

To validate our approach in a real-world setting, we utilized a motion capture
system to obtain the coordinates of each E-puck robot in physical space and
convert them into positions within the virtual space of Webots. Position and
velocity values from the physical space were transmitted to the E-puck2 model
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Table 1: Performance analysis of APF, ORCA, SAC, PPO, MACT in collision
avoidance task

Agents Number 5 10

Methods APF ORCA SAC PPO MACT APF ORCA SAC PPO MACT

Extra Travelled Distance(m) 2.801 2.724 2.655 2.865 2.615 2.881 2.946 2.912 3.021 2.739
Extra Travelled Steps 985 873 735 980 733 1850 1240 1190 1505 964
Danger State Rate(%) 0.0 0.0 1.1 2.1 1.0 0.0 0.0 2.0 3.3 0.9

Success Rate in 1000 Steps(%) 100 100 100 100 100 20 60 90 60 100

(a) APF (b) ORCA (c) SAC

(d) PPO (e) MACT

Fig. 4: Trajectory of five methods

in Webots via ROS communication. We set the perception range for each E-
puck2 agent to 0.4m, which means that location coordinates are broadcasted to
neighboring robots and obstacles within a 0.4m radius from the agent.

Fig. 5 displays the demonstration of our real-world experiment. In Fig. 5(a),
eight agents are positioned at the starting state around the environment’s edge.
To reach the target point quickly, the agents move towards the center while avoid-
ing static obstacles (safety barrels). As shown in Fig. 5(c), when all eight agents
approach the center, they encounter significant mutual interference and dynamic
changes, leading to actions such as braking to prevent collisions and successfully
avoiding the deadlock problem that often occurs in this region. Ultimately, as
depicted in Fig. 5(d), the agents successfully complete obstacle avoidance and
approach the target point. Our algorithm’s effectiveness is thus validated in a
real-world environment.
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Fig. 5: Demonstration of real experiment

5 Conclusion

In this paper, we employed reinforcement learning to tackle a multi-agent col-
lision avoidance task. For continuous tasks like this, we constructed continuous
transitions using linear interpolation, effectively leveraging information from the
trajectory. To generate transitions closer to the true manifold, we introduced
an energy discriminator to adjust the temperature coefficient of mixup, provid-
ing more accurate samples for reinforcement learning training. Our experiments
demonstrated that, compared to reinforcement learning methods such as SAC,
our approach improved both sampling efficiency and training performance in the
multi-agent obstacle avoidance task. Furthermore, we conducted experiments on
real E-puck robots to validate our method beyond simulations. Our current ap-
proach is based on parameter sharing, and in future work, we plan to incorporate
mixup data augmentation in other multi-agent algorithms, such as MAPPO.
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