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1 Proof of the Proposition 1

We first recap that the Partially Symmetric Markov game
M, which has the following two defined properties:
The partial reward invariance is characterized with

|R(s,a) — R(gs, ga)| < e. €))

The partial transition invariance is characterized using the
Maximum Mean Discrepancy (MMD) between the distribu-
tions of transitions T'(s'|s, a) and T'(gs'|gs, ga):

MMDx (T(s'|s,a), T(gs'|gs, ga)) < 6. )

Please note that T'(gs’|gs, ga) is also a distribution of s’ with
the sampling process s’ ~ T(gs’'|gs, ga) being defined as
1) gs' ~ T(gs'|gs, ga) and then 2) s" = L " (gs').

The MMD is a measure of distance used to quantify the
discrepancy between two distributions under a general class
of bounded mapping functions f € F. Eq.(2) can be ex-
pressed as:

MMD (T (s'|s, a), T(gs'|gs, ga))
= sup |ES’NT(S’\s,a) [f(slﬂ - Es’wT(gs’\gs,ga) [f(sl)] ’
feF

Proposition 1 (Performance Error Bound). If a Partial Sym-
metry Markov game M satisfies the conditions in equa-
tions (1) and (2) for all (s,a) € U, then the performance
error Errorp, = |Q*(s,a) — Q*(gs, ga)| is bounded by
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Proof. We will apply the mathematical induction method
for the proof. We define the m-step optimal discounted ac-
tion value function recursively for all (s,a) € ¥ and for all
non-negative integers m as follows:

Qm(s,a) = R(s,a) +~ Z [T(s]s,a) g}eai(Qm_l(s’, a)l,

s’es
3)
where we set Q1 (s’,a’) = 0. Please note that because the
reward R is bounded, @, (s, a) is bounded for any natural
number m, and so do the functions of max, Q,,(s’,a’) and
maxy Qm(gs’, ga’). Therefore, they are all elements of F.
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Step 1 (base step): For the base case of m = 0, we have
|Qo(s,a) — Qo(gs, ga)| = |R(s,a) — R(gs, ga)| < e
Step 2 (base step): For the base case of m = 1, we have
|Q1(s,a) — Q1(gs, ga)|

= |R(s,a) +7 S T(5'|s, @) max Qo s, o)
b', @

— R(gs,ga) — Z T(gs'|gs, ga) max Qol(gs’, ga’)
a

s/

IN

R(s,a) — R(gs, ga)|+v

S T(s/|s, a) max Qo(s”, o)
, a

s

— > " T(gs'|gs, ga) max Qo(gs’, ga’)
- a

s

Setny

Z T(s'|s,a) max Qo(gs’, ga’)
S/ @

— Z T(gs'|gs, ga) max Qo(gs’, ga)
If Y. T(s'|s,a) max, Qo(s’,a’) is greater than or equal
to > T(gs'|gs, ga) max, Qo(gs’, ga’), then we have:

Z T(s'|s, a) max Qo(s’,a’") — Z T(gs'|gs, ga) max Qol(gs’, ga’)
s’ “ 4 @

s

<

ST/ )s, @) max(Qu(gs, ga’) + )

_ Z T(gs'|gs, ga) max Qol(gs’, ga’)
] a

s

<e+ D T(s|s,a) max Qo(gs’, ga’)
s/ “

- " T(gs'|gs, ga) max Qo(gs’, ga')
o/ a

s

=+ |Ep(orio,a)[F(8)] = Br(ge |go,ga) [F(5)]

f(s)=max_, Qqo(gs’,ga’)
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If > . T(s'|s,a)maxq Qo(s’,a’) is smaller than
> o T(gs'|gs, ga) max, Qo(gs’, ga’), then we have:
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Taking the above discussions into account, we conclude
that
|Q1(s,a) — Qi(gs,ga)| < e+ y(e+0) = (1 +v)e+ 76

Step 3 (induction step): As we have the base cases, let’s
assume that

1Qj(s,a) — Qj(gs,ga)| < D v'e+ > 7’8
=0 i=1

holds for all non-negative integer j < m and all state-action
pairs (s,a) € U. Now we prove by induction on m that the
proposition is true. For the case m, we have:
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By repeating the same discussions in Step 2 regard-
ing two situations of ), T'(s'[s,a) max, Qm—_1(s',a’)
and Y, T(gs'|gs, ga) maxy Qm—1(gs’, ga’), we can ob-
tain that:
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Therefore, we have
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Based on mathematical induction, since the statement of
the proposition in both the base step and induction step has
been proved as true, |Q,(s,a) — Qm(gs, ga)| is bounded
for all m. When 0 < v < 1 and m approaches infinity, we
have:

Errorpy = Q" (s, 0) — Q" (g5, 9a)|

= lim 1Q™(s,a) — Q™ (gs, ga)
<t ($5r00509)
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The proof of proposition 1 is completed. O

2 Data Augmentation in MAPPO

Although data augmentation is familiar in the realm of RL,
we contend that its practical deployment poses challenges.
We’ll delve into its implementation, particularly in the equa-
tion (4). Within the standard MAPPO, agents leverage the
technique of parameter sharing. As such, the MAPPO learns
policy mp by optimizing the following objective:
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where 7y, is the behavior policy used to collect trajectories,
Tg is the policy we want to optimize, and A™ (s, a’) denotes
the advantage function. During training, the components of
equation (4) are calculated as:

1. The numerator of the first term is derived from the cur-
rent policy 7 using samples from the buffer. When deal-
ing with augmented samples (L,[s], K4[a]), this term is
represented as mg (K g[a] | Lg[s]).

2. The denominator is formulated using the state-action pair
(s, a) and the previous policy mp,,,. We can only interact
with the environment through the real state, The denom-
inator is mg,,, (a | ).

3. The term A in equation (4) is calculated using the re-
wards generated during the interaction. Therefore, this
term is based on the original samples, i.e., Ag (s, ai).

Thus, If transformation (L4, K ) is applied to the algo-
rithm, the MAPPO objective changes, and equation (4) is
replaced by (5).
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Figure 1: The observation space in formation change.

However, the right-hand side doesn’t reliably estimate the
left-hand side, given that 7o (K4[a] | Lg[s]) # me(a | s).
Indeed, a specific transformation (L, K,) in data augmen-

mo(Kgla]|Lg[s]

tation might yield a large ratio of o Tals ). In multi-

old
agent settings, when multiple agents are considered, more

sources of variance are introduced, making the training
severely unstable. Our proposed symmetry consistency loss
provides a solution to this challenge. It is worth noting that
depending on the specific data augmentation method used,
there may be minor differences in the details, but most pa-
pers that use data augmentation follow this approach(Laskin
et al. 2020). When using different data augmentation im-
plementations, even if the numerator and denominator are
transformed simultaneously, the output of the formula is not
the correct value.

3 Details of the Formation Change Task

In this section, we describe the "formation change’ task by
defining its state space, action space, and reward function.

State space. As shown in figure 1, the observation of each
robot is the concatenation of its direction and the relative
coordinates of the others in the environment.

(aiv dl’l, dyla diUQ, dy27 d$3a dy3)a

where 6; is the velocity direction of agent . And the (dz, dy)
indicates the relative coordinates of the others in the environ-
ment. The subscript ¢ represents the nearest obstacle, goal,
and agents when equals 1,2,3 respectively.

Action space. We choose Epuck as the robot model in
the Webots simulator. Agents can assign the wheel speed to
control the robot.

Reward function. For each agent i, we define a reward
function as Equation (6). The desired target position for
agent i is represented as 7; € R2, and the avoidance ra-
dius is denoted by © > 0. At step ¢, the coordinates of agent
i and obstacle j are specified as P} and O, respectively.

R{ = Dj + Cf. (6)

D! stands for the distance reward:
DE=100 (| T~ [Pl @)

C! stands for the collision penalty:

bt
Ct:{0'35 if | P}~ 05 <05 ®)

i 0 otherwise

4 Symmetry Breaking
4.1 Predator-Prey and Cooperative Navigation

We focus on a discrete-action version of the MPE environ-
ment. Here, the range of actions is confined to movements
up, down, left, right, or remaining stationary. If the action
chosen is to move right, it equates to a displacement of 5
units to the right. To simulate the behavior of robots on un-
even terrains, we incorporate Gaussian noise. After a robot
executes an action within this environment, Gaussian noise
is superimposed onto its state transition. In the main text,
we made reference to ’noise intensity’. To further clarify,
‘noise intensity’ denotes the mean and variance of Gaus-
sian noise. For instance, a noise intensity of one signifies
Gaussian noise with both a mean and a variance of one. This
introduced randomness simulates the uneven ground, effec-
tively breaking spatial symmetry. When the Gaussian noise
has a mean of zero and a non-zero variance, it emulates a
rugged but flat surface. Such terrains can be visualized as
ones disrupted by gravel, small rocks, or other minor ob-
structions, leading to their uneven nature. Gaussian noise
characterized by both a non-zero mean and variance sim-
ulates slanted and rugged terrains, akin to a gravelly slope.

4.2 Wildlife Monitoring

In the context of the wildlife monitoring task, agents move
in a grid world, taking discrete actions such as moving
up, down, left, right, or remaining stationary. For instance,
choosing the action to move right increments the agent’s
horizontal coordinate by one unit. To introduce partial sym-
metry, we infuse noise into the state transitions. Specifically,
when the “noise level” cited in the main content is ¢, there’s
a probability of 7 x 10% that, after executing an action,
the agent will transition to a different state than initially in-
tended, thereby disrupting the inherent symmetry.

4.3 Formation Change

The Formation Change task stands as a notable challenge in
robotics. In our approach, we employed the Webots simula-
tor and harnessed its distinct uneven terrain feature.
Rather than just a visual aspect, this terrain is generated
mathematically through Perlin noise, a reputable method
for crafting uneven terrains. The noise intensity mentioned
in the main content signifies the height parameter of the
uneven terrain within Webots. As the noise intensity
increases, the terrain becomes more rugged, breaking the
spatial symmetry and thereby posing additional challenges
for the robots.

S Physical Deployment

In real-world scenarios, we executed experiments with e-
puck2 robots, a mini mobile robot conceived by EPFL
(Mondada et al. 2009). To amplify their computational capa-
bilities, we incorporated an expansion board endowed with
a Raspberry Pi (Millard et al. 2017). Our assessments tran-
spired in a 2m x 2m indoor domain, encircled by walls.
We employed a motion capture system for our experiments
(Pfister et al. 2014). For the sake of clarity, we omitted the
obstacles previously discussed.



Figure 2: The Epuck robots for formation change task.

By integrating our PSE framework with the MAPPO al-
gorithm, the agents are able to complete tasks with fewer
risky states. A state is labeled as “high-risk” when the dis-
tance between agents is less than 5 centimeters. We mea-
sured the frequency of such high-risk states. Our results in-
dicated that the PSE-MAPPO approach reduced these occur-
rences to 2.1% of the total states, while with the standalone
MAPPO, it was 5.6%. This underscores the efficacy of our
method in enhancing algorithmic performance in real-world
scenarios. For a more detailed and visual insight into our
findings, we recommend consulting our videos.

6 Hyperparameters

In all our scenarios, the hyperparameters used the default
parameters from paper (Yu et al. 2021). Table 1 describes
the hyperparameters for MAPPO. For PSE, each interac-
tion sample along with its augmented ones will be added
all together to the buffer at each time step. We used the
same buffer size for both PSE and non-PSE across all exper-
iments. Table 2 describes the hyperparameters for the QMix
and MADDPG. We utilize parameter sharing when there are
homogenous agents because this has been the accepted prac-
tice in the majority of past MARL works (Christianos et al.
2021; Rashid et al. 2018).

To facilitate the training process for the QMIX algorithm
in the “formation change” task, we made a modification to
the continuous action space. We transformed the continu-
ous action space by breaking it down into distinct atomic
actions. For instance, for an action space that spans contin-
uously from -1 to 1, we implemented a discretization strat-
egy at regular 0.2 intervals. The computational simulations
and experiments for our study were executed on Ubuntu
18.04 equipped with an i9-12900KF CPU. As for the soft-
ware framework, the experiments leveraged Python version
3.9.12 coupled with PyTorch version 1.13.0 to ensure effi-
cient computation and reproducibility.

7 Symmetry Loss for Value-based Algorithm

For clarity of presentation, the MADDPG is used as an
example to introduce the symmetry consistency loss for a

value-based algorithm. The MADDPG adapts the central-
ized training with decentralized execution (CTDE) frame-
work. The centralized action-value function Q' is updated
by:

SMADDPG(¢) = Es,a [(Q (Sa Ay ..., aN) - y)Q] (9)

where y =7 +vQ(s’,a1,...,aly) and @} is obtained by
the current policy; Q4 (s, a) represent the Q-value under the
original state input, and Q4(Lg[s], K[a]) to represent the
Q-value under symmetry state input where a indicates the
joint action of all agents. Then, the square of Lo distance
between the Q-network outputs under the original state, and
the symmetric transformed state can be directly calculated
by:

2
Suapprc (8) = Eva | (Qs(s:a) = Qu(Lys], K;la))]
(10)
This item can help constrain the agent’s value function to

satisfy the defined symmetry constraints.

Table 1: hyperparameters used in MAPPO.

Hyperparameters value
recurrent data chunk length 10
gradient clip norm 10.0
gae lamda 0.95
gamma 0.99
value loss huber loss
huber delta 10.0
batch size buffer length x num agents
mini batch size batch size / mini-batch
optimizer Adam
optimizer epsilon le-5
weight decay 0
network initialization Orthogonal
use reward normalization True
use feature normalization True

Table 2: Hyperparameters used in QMix and MADDPG.

Hyperparameters Value
Gradient clip norm 10.0
Random episodes 5
Epsilon 1 —0.05
Epsilon anneal time 50000 timesteps
Train interval 1 episode
Gamma 0.99
Buffer size 5000 episodes
Batch size 32 episodes
Optimizer eps le-5
Optimizer Adam
Weight decay 0
Network initialization Orthogonal
Use reward normalization True
Use feature normalization True
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Figure 3: Performance of EQ-MPN, MPN, and MPN-PSE in wildlife monitoring across different noise levels

8 Additional Experimental Results

As illustrated in Figure 3, we assessed the performance of
three distinct network architectures: EQ-MPN, MPN, and
MPN-PSE, across various noise levels, representing differ-
ent degrees of symmetry breaking(van der Pol et al. 2021).
As the noise intensity escalated, the EQ-MPN, inherently
designed for perfect symmetry, exhibited a pronounced de-
cline in its performance. In contrast, MPN showcased com-
mendable resilience. Most notably, the MPN-PSE, anchored
in the PSE framework, consistently outperformed its coun-
terparts at every noise level, underscoring the efficacy of our
approach in contexts characterized by partial symmetry.

9 Scope and Limitations of the Method

The “Definition 2 in Sec 4.2 defines the Partially Symmet-
ric Markov game M, without specifying the scope of ob-

servation space, because we would like to provide the con-
cept without the loss of generality: As long as the obser-
vation condition s # Ly(s) or a # K,(a) holds in the
game, the data points can be augmented using symmetry
and our PSE method is applicable to improve the MARL.
Symmetry is correlated to the observation space, and the
scope should be discussed. To this end, we can divide the
features of each agent’s observation into non-invariant fea-
ture set G = [g1, 92, - ., gm] (e.g., global view’s features)
and invariant feature set I = [iy, io, ..., %, (e.g., individual
view’s features). Each g; is sensitive to the transformations
(e.g., rotations, or other geometric ones) and g; # L(g;).
In contrast, each ¢; remains unchanged after the transfor-
mations, and i; = L(i;). The consideration of symmetry
is meaningless if we only have I in the observation space.
Therefore, we should define the observation space to include
non-invariant features to make the symmetry meaningful.
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