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Abstract

Incorporating symmetry as an inductive bias into multi-agent
reinforcement learning (MARL) has led to improvements
in generalization, data efficiency, and physical consistency.
While prior research has succeeded in using perfect symme-
try prior, the realm of partial symmetry in the multi-agent do-
main remains unexplored. To fill in this gap, we introduce
the partially symmetric Markov game, a new subclass of the
Markov game. We then theoretically show that the perfor-
mance error introduced by utilizing symmetry in MARL is
bounded, implying that the symmetry prior can still be use-
ful in MARL even in partial symmetry situations. Motivated
by this insight, we propose the Partial Symmetry Exploita-
tion (PSE) framework that is able to adaptively incorporate
symmetry prior in MARL under different symmetry-breaking
conditions. Specifically, by adaptively adjusting the exploita-
tion of symmetry, our framework is able to achieve superior
sample efficiency and overall performance of MARL algo-
rithms. Extensive experiments are conducted to demonstrate
the superior performance of the proposed framework over
baselines. Finally, we implement the proposed framework in
real-world multi-robot testbed to show its superiority.

1 Introduction
Multi-Agent Reinforcement Learning (MARL) is increas-
ingly gaining attention due to its capabilities in handling
complex tasks(Li et al. 2023). Such tasks often necessitate
strategic interaction and rivalry among various entities (Yu
et al. 2021b; Feng et al. 2023). However, a notorious lim-
itation of most MARL approaches is their substantial data
dependency, necessitating vast amounts of data to build an
efficient model. This limitation severely narrows the scope
of MARL’s practical application in real-life settings (Shi,
Steenkiste, and Veloso 2021). How to develop strategies to
improve MARL’s sample efficiency has become an impor-
tant and long-standing research topic.

Strategies to augment sample efficiency often involve in-
tegrating external knowledge to accelerate MARL’s training.
Various methods incorporating extra knowledge have been
proposed in recent literature (Shi, Mo, and Di 2021; Shi et al.
2022). In the realm of MARL, prior research has highlighted
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Figure 1: Illustration of symmetry disruption in a non-
uniform field: despite the spatial symmetry of the multi-
agent system, the introduction of a non-uniform field, such
as uneven terrain or a wind field, disrupts this symmetry and
the symmetry assumption does not strictly hold everywhere.
Colors denote varying intensities of the field.

the advantage of employing permutation invariance. Permu-
tation invariance asserts that the systemic behavior remains
unaffected by any changes in the order of agent consider-
ation (Jianye et al. 2023). The application of permutation
invariance encourages extensive parameter sharing among
agents, thereby augmenting data efficiency. Additionally, the
most common symmetry in multi-agent systems is rotation
symmetry, as illustrated in Figure 1. In this context, rotat-
ing the global state results in a rotation of the optimal joint
policy. Some studies have ameliorated data efficiency by de-
signing inherent network structures that satisfy this prop-
erty (van der Pol et al. 2021).

Current techniques often assume the existence of perfect
permutation invariance or perfect spatial symmetry. How-
ever, such ideal conditions are rare in real-world scenarios.
For instance, again in Figure 1, multiple agents attempt to
approach a target point where each agent can sense the en-
vironment, including information about other agents, obsta-
cles, and the target point. Such problems, conditioned on the
perfect symmetry transition function and symmetry reward
function, are defined as symmetric Markov game in (van der
Pol et al. 2021; Yu et al. 2023). Unfortunately, in the real
world, there might exist imperfections in the environment,



e.g., uneven ground, wind, and other non-uniform fields act-
ing on the agents. The non-uniform fields can deviate the
system’s transition dynamics or reward functions from per-
fect spatial symmetry to a certain extent. Specifically, when
we rotate the state-action pairs of our agents, we cannot ro-
tate the non-uniform fields, accordingly. As a result, despite
the multi-agent system having a spatially symmetrical struc-
ture, its response to the non-uniform fields can no longer
employ perfect symmetry. Furthermore, slight variations in
elements such as power supply or physical structures could
make the agents slightly heterogeneous, thus violating the
principle of perfect permutation invariance. This violation
poses a significant challenge to real-world implementations
of symmetry-prior-based reinforcement learning methods.

Regrettably, existing studies, either single-agent or multi-
agent ones, have seldomly explored such scenarios of par-
tial symmetry, neither from a theoretical nor from a prac-
tical point of view. To emphasize the necessity of such a
study, we evaluated the performance of the perfect sym-
metry network proposed in (van der Pol et al. 2021) under
various symmetry-breaking conditions. As depicted in Fig-
ure 2, the performance of their EQ-MPN and MPN meth-
ods is evaluated under three distinct noise levels, which sig-
nifies the extent of symmetry-breaking introduced into the
system. We found that as symmetry breaks, the performance
of the network with embedded symmetry, EQ-MPN, dete-
riorates. Motivated by these challenges, we delve into the
partial symmetry scenarios, targeting at a new methodology
that relaxes the requirement of strict symmetry with a theo-
retical performance bound guaranteed.

In this paper, we first define the partially symmetric
Markov game. It gives rise to a new class of symmetry
Markov game with slack symmetry constraints while par-
tially maintaining favorable inductive biases for learning.
We theoretically show that the performance errors intro-
duced by leveraging symmetry under partially symmetric
Markov game are bounded. Our theoretical analysis can be
seamlessly applied to a variety of symmetries, including
permutation invariance, rotational equivariance, etc. Upon
this setting, we introduce a Partial Symmetry Exploitation
framework (PSE). PSE first quantifies the extent/level of
symmetry in the environment using a dedicated symmetry
quantification module and then selects an appropriate train-
ing pipeline according to that symmetry level. The PSE in-
volves several technical components to adaptively incorpo-
rate symmetry into the training process. Our main contribu-
tions are listed as follows:
• Formally define the concept of partial equivariance and

generalize symmetry Markov game to partially symmet-
ric Markov game;

• For partially symmetric Markov game, theoretically
show that the performance error introduced by utilizing
symmetry in MARL is bounded;

• Motivated by the error bound, propose a novel PSE
framework to adaptively incorporate and leverage sym-
metry prior in MARL;

• Demonstrate our framework’s superiority over baselines
in both simulated tasks and real-world robot experiments.
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Figure 2: Performance of the EQ-MPN and MPN under
varying noise levels. As the noise intensity (the degree of
symmetry-breaking) increases, the perfect symmetry net-
work, EQ-MPN, exhibits a declining trend.

2 Related work
2.1 Symmetries in Single-agent RL
The methods for exploiting symmetry in RL can be broadly
classified into two major categories: data augmentation and
network structure design. Data augmentation in single-agent
RL is to generate additional data through image transforma-
tions during the training phase of the model (Laskin et al.
2020; Yarats, Kostrikov, and Fergus 2020; Lin et al. 2020;
Amadio, Colomé, and Torras 2019). Alternatively, symme-
try can be introduced through a contrastive learning frame-
work by enforcing consistencies between an image and its
augmented version (Laskin, Srinivas, and Abbeel 2020).
The network design method is to design specialized archi-
tectures that implicitly embed prior knowledge relevant to
the task (Ravindran and Barto 2001). For instance, symme-
tries in the joint state-action space can be expressed through
the implementation of policy networks (van der Pol et al.
2020; Wang, Walters, and Platt 2022). Our paper explores
the realm of partial symmetry, extending beyond the scope
of the approaches commonly employed.

2.2 Symmetries in Multi-agent RL
In the realm of multi-agent systems, fewer studies have
explored the use of data augmentation techniques. To our
knowledge, the most related work to our work is the data
augmentation method proposed in (Ye et al. 2021). This
method generates additional data by implementing permu-
tation transformations for homogeneous agents, interpret-
ing data augmentation from the perspective of permuta-
tion invariance. In a similar vein, the need for more exten-
sive integration of prior knowledge into MARL is appar-
ent. Multi-Agent MDP Homomorphic Networks have been
developed to embed symmetries, thus enhancing data effi-
ciency (van der Pol et al. 2021). However, these methods
impose strict constraints on symmetry, which hinders their
applicability in real-world scenarios characterized by partial
symmetry. In contrast, we treat symmetry as an additional
objective and incorporate it through soft constraints such as
data augmentation and regularization. Our approach is able
to adjust to different symmetry levels, thereby improving al-
gorithmic performance in scenarios with partial symmetry.



3 Preliminaries
3.1 Cooperative Markov game
An n-agent cooperative Markov game (Boutilier 1996) can
be defined as a tuple (N,S, {Ai}ni=1 , R, T,Ψ), whereN de-
notes the set of agents, S is the state space, and Ai is the ac-
tion space of agent i = 1, . . . , n. LetA = A1×A2×· · ·×An
be the joint action space, and T : S × A × S → [0, 1]
be the transition function. Ψ is the set of admissible state-
action pairs. At time step t, the agents are at state st (which
may not be fully observable) and take independent action
(a1, ..., aN ) relying on their policy. Then, the environment
emits the bounded joint rewardR and moves to the next state
st+1. The agents aim to maximize the expected joint return,
defined as Eπ [

∑∞
t=0 γ

tR (st, at)], where 0 < γ < 1 is the
discount factor, by selecting actions according to the policy
πi : S × Ai → [0, 1]. The initial states are determined by a
distribution η : S → [0, 1].

3.2 Groups and Transformations
This section offers an overview of the concepts of groups
and transformations (Bronstein et al. 2021). A group G is a
set equipped with a binary operator that has four mathemat-
ical properties: identity, inverse, closure, and associativity.
Our discussion primarily revolves around the group SO(2)
and its cyclic subgroup Cn. Specifically, SO(2) repre-
sents the group of continuous rotations {Rθ : 0 ≤ θ < 2π}.
Meanwhile, Cn stands for the discrete subgroup, defined as
Cn =

{
Rθ : θ ∈

{
2πi
n | 0 ≤ i < n

}}
. A rotation matrix il-

lustrates the act of rotating within Euclidean space (Fillmore
1984). For a specific rotation set {0◦, 90◦, 180◦, 270◦}, the
rotation matrix is formulated as:

R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
.

The four group axioms are satisfied in the case of a rotation
transformation.

3.3 Equivariance and Invariance
In multi-agent systems, the symmetries are commonly re-
ferred to as equivariance and invariance(Yu et al. 2023).
Given a transformation operator Lg : X → X and a map-
ping function f : X → Y , if there exists a second transfor-
mation operator Kg : Y → Y in the output space of f such
that:

Kg[f(x)] = f (Lg[x]) ,

where g ∈ G and G is a mathematical group, then, function
f is equivariant to the transformation Lg . The operators Lg
andKg can be used to describe the same transformation, but
in different spaces. A related notion to equivariance is invari-
ance. If for any choice of g ∈ G, we have that Kg = I , the
identity function, then we say function f is invariant to trans-
formation Lg . Figure 1 (upper half) shows the equivariance
of the optimal policy, rotating the state globally results in a
transformation of the optimal policy. Given two states s and
Lg[s], the optimal policy π∗ is equivariant to its transforma-
tion which is denoted by Kg[π

∗(s)] = π∗ (Lg[s]). Without
special notice, the transformations Lg,Kg are assumed to be
bijective in this paper.

4 Defining and Characterizing Partially
Symmetric Markov game

4.1 Partial Equivariance and Invariance
Real-world dynamics may not satisfy the strict equivariance
though such a strict assumption has been commonly used
for simplicity in literature (Wang, Walters, and Platt 2022;
van der Pol et al. 2020). In this paper, we introduce a defini-
tion of partial equivariance and invariance to fill the gap.
Definition 1 (Partial Equivariance and Invariance). Given a
transformation operator Lg : X → X and a mapping func-
tion f : X → Y , if there exists a second transformation
operator Kg : Y → Y in the output space of f such that:

‖Kg[f(x)]− f (Lg[x])‖ ≤ ε,
where g ∈ G and G is a mathematical group, we say f is
ε-partially equivariant to the transformation Lg and Kg . A
related notion to ε-partial equivariance is the ε-partial in-
variance: If for any choice of g ∈ G we have Kg = I ,
then function f is ε-partially invariant to transformation Lg .
Note that strict equivariance or invariance are special cases
of partial ones with ε = 0.

4.2 Partially Symmetric Markov game
In this subsection, we formally define the partially sym-
metric Markov game, a subclass of the cooperative Markov
game characterized by partial symmetry.
Definition 2 (Partially Symmetric Markov game).
The partially symmetric Markov game Mg =
(N,S, {Ai}ni=1 , R, T,Ψ, g, ε, δ) is a cooperative Markov
game that satisfies the conditions of partial reward invari-
ance and partial transition invariance. The state and action
transformation are defined as Lg : S → S andKg : A→ A,
respectively. For state-action pairs (s, a) ∈ Ψ, we denote the
transformed state-action pairs as (gs, ga). Here, gs = Lg(s)
and ga = Kg(a) for short. The partial reward invariance is
characterized with:

|R(s, a)−R(gs, ga)| ≤ ε. (1)

The partial transition invariance is characterized using the
Maximum Mean Discrepancy (MMD) between the distribu-
tions T (s′|s, a) and T (gs′|gs, ga):

MMDF (T (s′|s, a), T (gs′|gs, ga)) ≤ δ. (2)

Please note that T (gs′|gs, ga) is also a distribution of s′ with
the sampling process s′ ∼ T (gs′|gs, ga) being defined as
1) gs′ ∼ T (gs′|gs, ga) and then 2) s′ = L−1g (gs′).

The MMD is defined as a measure of distance used to
quantify the discrepancy between two distributions under a
general class of bounded mapping functions f ∈ F (Gretton
et al. 2006). Eq.(2) can be expressed as:

MMDF (T (s′|s, a), T (gs′|gs, ga))

= sup
f∈F

∣∣Es′∼T (s′|s,a)[f(s′)]− Es′∼T (gs′|gs,ga)[f(s′)]
∣∣.

We believe that the symmetry property is a common oc-
currence in many real-world multi-agent tasks. Our formal
definition of this issue holds theoretical and practical signif-
icance.
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4.3 Performance Error Analysis
We show that if a problem can be formulated as a partially
symmetric Markov game, the performance error introduced
by using symmetry-augmented data in training is bounded.
In the following, variables without a subscript i denote the
concatenation of all variables for all agents (e.g., a denotes
the joint actions of all agents). Based on the definition in
(Ravindran and Barto 2001), the m-step optimal discounted
action value function recursively for all (s, a) ∈ Ψ and for
all non-negative integers m is defined as follows:

Qm(s, a) = R(s, a) + γ
∑
s′∈S

[T (s′|s, a) max
a′∈A

Qm−1(s′, a′)].

The optimal action-value function Q∗(s, a) is the limit of
Qm(s, a) as m approaches infinity. We now define the per-
formance error for Mg , which measures the error of a Q-
function trained on symmetry-augmented data.
Definition 3 (Performance Error forMg when using sym-
metry-augmented data). Let Q∗(s, a) be the optimal action-
value function, g be the transformation associated withMg .
Then, the performance error ofMg is defined as:

ErrorMg = |Q?(s, a)−Q?(gs, ga)|,
where Q?(gs, ga) is the action-value function trained by the
symmetry-augmented data.
Proposition 1 (Performance Error Bound). If a partially
symmetric Markov game Mg satisfies the conditions in
equations (1) and (2) for all (s, a) ∈ Ψ, then the perfor-
mance error ErrorMg = |Q?(s, a)−Q?(gs, ga)| is bounded
by ε

1−γ + γδ
1−γ .

As stated in Prop 1, for the Partially Symmetric Markov
game Mg , the error introduced by incorporating symme-
try samples is bounded. The proof of Prop 1 can be found
in Section 1 of the Appendix1. Prop 1 implies that the
symmetry-augmented data are useful in MARL to a bounded
extent even in partial symmetry situations likeMg .

1Video demonstrations and Supplementary materials are avail-
able at the project website https://xinyu-site.github.io/PSE/.

5 Framework of the Partial Symmetry
Exploitation

This paper focuses on solving the following problem: In the
context of partially symmetric Markov gameMg , how can
we appropriately leverage the symmetry prior to improv-
ing sample efficiency and performance of MARL? On top of
Prop 1, we propose a general framework, called Partial Sym-
metry Exploitation (PSE), for exploiting the symmetry prior,
properly. The PSE framework is designed to adaptively uti-
lize symmetry and is composed of four key modules: Sym-
metry Quantification, Adaptive Tuning, Symmetry Augmen-
tation, and Symmetry Consistency Loss.

5.1 Symmetry Quantification
We propose a quantification method to measure the sym-
metry inMg . This method is applicable to various symme-
tries inherent in multi-agent systems, including permutation
invariance, rotational equivariance, and translational invari-
ance. We employ a transformed environment to assess the
degree of symmetry by comparing the system’s responses in
both the original and transformed environments. For a par-
tially symmetric Markov gameMg , consider (s, a, s′) with
an associated transformation g. In the transformed environ-
ment, action ga is applied to the state gs, leading to a new
state s̄′. We define a function D(gs′, s̄′) to measure the de-
gree of symmetry in MARL:

D(gs′, s̄′) = 1− 1

2

‖gs′ − s̄′‖22
‖gs′‖22 + ‖s̄′‖22

, (3)

where the numerator represents the Euclidean norm of the
difference between the vectors, and the denominator is the
sum of individual Euclidean norms. Given a vector v, its Eu-
clidean norm is defined as ‖v‖2 =

√∑
i v

2
i . D is a scalar

and its values lie within the interval [0, 1]. A value of 1 indi-
cates perfect symmetry and the lower bound ofD is attained
when gs′ = −s̄′. While we utilize the Euclidean norm in
this context, other norms can also be employed.



Upon obtaining the measure of symmetry, we can intro-
duce threshold values to determine the level of symmetry,
categorizing the environment into Partial Symmetry (C1)
and Non-Symmetry (C2). It’s worth noting that perfect sym-
metry is a special case of partial symmetry. The threshold
can be tuned according to the specific requirements of the
problem and the performance trade-offs acceptable.

5.2 Adaptive Tuning
In the early stages of training in Mg , symmetry can as-
sist the model to converge more swiftly and reduce the loss
faster. However, as the model progressively adapts to the
training environment and starts to capture more nuanced fea-
tures of the data, an over-reliance on symmetry might have a
negative effect on the model’s training. To tackle this issue,
as training advances, our PSE gradually reduces the depen-
dence on symmetry. To this end, we present the following
function:

λ(D, k) = De−βk, (4)
which serves as the annealing coefficient at the kth iteration,
with D signifying the degree of symmetry in Eq. (3) and β
denoting the decay rate. In the follow-up stage, as will be
discussed later, the coefficient λ(D, k) serves as both 1) a
probability to decide on whether the symmetry-augmented
data is used and 2) a coefficient in the objective function to
weigh the component of symmetry constraints. This auto-
tuning approach strikes an adaptive balance on the extent to
which the symmetry is leveraged in different training phases.

5.3 Symmetry Augmentation
One straightforward way to leverage symmetry is through
data augmentation. Motivated by Prop 1, we present a data
augmentation strategy designed to adaptively leverage sym-
metry. Based on Eq. (4), we obtain a coefficient λ1 =
De−β1k that starts with a value equal to the degree of sym-
metry and decreases over training iterations. Specifically, the
coefficient λ1 acts as a probabilistic threshold. If a random
number r drawn from a uniform distribution between [0,1]
is less than λ1, data augmentation is applied in that iteration
of training. This strategy ensures an expedited training pro-
cess in the early phases. As training progresses, reliance on
symmetry-augmented samples is reduced, thereby mitigat-
ing potential performance errors they might introduce.

5.4 Symmetry Consistency Loss
In multi-agent settings, using data augmentation to improve
sample efficiency can be challenging. The reason is that
when multiple agents are considered, more sources of vari-
ance are introduced, making the training unstable. The pro-
posed symmetry consistency loss provides mitigation to this
challenge (see Section 2 in the Appendix for more details).
For a clean presentation, the MAPPO is used as an example
to introduce symmetry consistency loss.

Symmetry Consistency Loss. The policy consistency
loss term Sπ(θ) is defined as

Sπ = KL [πθ(ga | gs) | πθ(a | s)] , (5)

aiming to constrain distribution πθ(ga | gs) to be close to
πθ(a | s). This helps guide the training process according

to the symmetry prior. Assume that Vψ(s) represents an ap-
proximate value for state s, the symmetry consistency loss
for value function is designed as

SV = Es
[
(Vψ(s)− Vψ (gs))

2
]
, (6)

designed to minimize the discrepancy between the outputs
of the value function when provided with the original input
and the symmetry-transformed input. Therefore, we regard
Eqs. (5) and (6) as the symmetry consistency loss.

MARL with Symmetry Consistency Loss. Rather than
having a fixed coefficient in the loss function, we utilize
λ2 = De−β2k calculated by Eq. (4) to dynamically adjust
the coefficient of symmetric loss. For the MAPPO, our PSE
method optimizes the following loss objective:

JPSE = JMAPPO − λ2(Sπ + SV ). (7)

The JMAPPO is the objective function for MAPPO and can
be found in Section 2 of the Appendix.

6 Experiments
This section demonstrates our PSE’s superiority via experi-
ments in both simulated tasks and real-world robot systems.

6.1 Environmental Settings

(a) Predator-Prey (b) Navigation (c) Formation change

Figure 4: The simulated tasks considered in the experiments.

We conducted experiments in several tasks, including
Predator-Prey (PP), Cooperative Navigation (CN), Wildlife
Monitoring, and Formation Change (FC). CN and PP is a
classic scenario implemented in multi-agent particle envi-
ronment (Mordatch and Abbeel 2017). The wildlife mon-
itoring is a grid-world-based environment, where a set of
drones has to coordinate to accomplish the task (van der Pol
et al. 2020). The goal is to trap poachers by having one drone
hover above them while the other assists from the side. The
details of FC are provided in Section 3 of the Appendix. Fig-
ure 4 shows parts of the tasks.

Symmetry Breaking. The original classic setups of these
four tasks were designed to have perfect spatial symmetry.
We deliberately modified these tasks to incorporate partial
symmetry by integrating noise into the transition dynamics.
The multi-robot FC task was conducted in the high-precision
robot simulation environment Webots. As shown in Figure
4c, robots were required to learn to avoid each other as well
as the obstacles and coordinate to reach their destinations.
We set an uneven terrain for this task to simulate partial
symmetry. The severity of these uneven conditions can be
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Figure 5: Learning curves of the baseline and their versions with the PSE framework on the three multi-agent tasks.
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Figure 6: The learning curve of MPN, EQ-MPN and MPN-PSE under different symmetry-breaking in the Wildlife Monitoring.

modified, allowing us to explore the influences of environ-
mental uncertainties on MARL in depth. For more details on
symmetry breaking, please see Section 4 of the Appendix.

Baselines. The proposed PSE framework was applied to
several baselines, including Multi-Agent Deep Determinis-
tic Policy Gradient (MADDPG), Monotonic Value Function
Factorisation for Deep MARL (QMIX), and Multi-Agent
Proximal Policy Optimization (MAPPO), which are main-
stream MARL approaches (Rashid et al. 2018; Lowe et al.
2017; Yu et al. 2021a).

6.2 Main results
This section presents the experimental results obtained using
the setup described in Section 6.1. The performance of each
algorithm was evaluated with 10 different random seeds, and
the final experimental results under partial symmetry are
shown in Figure 5. The results show that the MARL algo-
rithms adopting the PSE framework achieved different de-
grees of advantage over their original versions.

Predator-Prey. In this scenario, there were three preda-
tors and one prey. As shown in Figure 5a, the proposed
PSE framework outperformed the baseline methods signif-
icantly. The results indicated that the proposed framework
could improve the data efficiency, convergence speed, and
performance in terms of evaluation rewards.

Cooperative Navigation. The cooperative navigation
was a fully cooperative environment, where 3 agents (cir-

cles) cooperated to reach 3 landmarks (crosses) under a min-
imum number of collisions. Similarly, as shown in Figure
5b, the results show that the proposed framework can im-
prove data efficiency and performance in this task.

Formation Change. To evaluate the proposed method in
complex tasks, experiments were conducted on the multi-
robot formation change task in the Webots simulator, as
shown in Figure 4c. In this scenario, 8 robots started in a
square formation and had their destinations set on the op-
posite side. The experimental results show that the MAD-
DPG and QMIX could not learn a useful policy in this
task, whereas the agents trained by the MAPPO-PSE and
MAPPO could reach the destination while avoiding colli-
sions with each other and obstacles. As presented in Figure
5c, the algorithms enhanced by the proposed framework ob-
tained higher rewards than the original versions. This indi-
cates that the proposed PSE can further improve the perfor-
mance of MARL algorithms in challenging environments.

Wildlife Monitoring. We conducted a comparison of
three graph network-based methods: the Message Passing
Network (MPN, a classic graph convolutional network), the
EQ-MPN (an advanced baseline network embedding perfect
symmetry as proposed in (van der Pol et al. 2021)) and MPN
with the PSE framework (MPN-PSE). The Wildlife Mon-
itoring is specially analyzed here because it is the chosen
environment in the literature well suited to the EQ-MPN,
featuring pixel-based and grid-world states. Advanced re-
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Figure 7: Convergence reward under varying noise intensities of various models across PP, CN, and FC scenarios.

sults are achieved by EQ-MPN when the perfect symme-
try in the environment holds. Here, we assessed the three
models’ performance across varying degrees of symmetry-
breaking. Under conditions of perfect symmetry (see Figure
6a), the EQ-MPN with the perfect symmetry prior embedded
in its network structure demonstrates superior performance
compared to the classic MPN. However, our PSE framework
surpasses both EQ-MPN and MPN in terms of convergence
speed and the quality of the final convergence. As shown in
Figure 6b, under partial symmetry, the performance of the
EQ-MPN deteriorates, even to a level worse than the classic
MPN. In contrast, our PSE-based method continues to en-
hance the performance of MPN. In Figure 6c, where the en-
vironment is completely devoid of any symmetry, all three
methods face challenges in learning an acceptable policy.
Yet, our PSE framework still maintains a discernible advan-
tage.

6.3 Impact of Different Degrees of Symmetry and
Ablation Analysis

We analyzed four distinct algorithm variations in our study:
1) MAPPO, which stands for the most primitive version of
the algorithm. 2) MAPPO-SE, which retains only our sym-
metry augmentation and loss function components within
the original MAPPO, and where the coefficient of the loss
function is fixed to 0.5. 3) the MAPPO-PSE, our com-
prehensive framework representing the entirety of our pro-
posed enhancements. Figure 7 denotes each algorithm type
with a distinct color, and different algorithm variations are
highlighted by varying line types. It is observed that the
PSE framework consistently excels across different degrees
of symmetry-breaking. Interestingly, MAPPO-SE, which
sticks to leveraging the perfect symmetry, experiences a sub-
stantial performance decline as noise intensity increases,
even deteriorating to a level worse than the classic MAPPO.

The results provide two insights: 1) a strong dependency
on embedding perfect symmetry may seriously hamper the
training and the final performance when the symmetry keeps
breaking, and 2) our PSE framework can adapt to vari-
ous symmetry-breaking conditions and consistently enhance
the performance of mainstream multi-agent algorithms. The
PSE enjoys this advantage due to the framework’s symmetry
quantification and adaptive tuning components. The same

(a) Start points (b) Trajectories (c) End points

Figure 8: Real-world formation change on a swarm of
robots. The robots successfully switched their positions to
the antipodal points by achieving collision avoidance.

experiments are also conducted based on QMIX and MAD-
DPG, which are included in Figure 7, and similar observa-
tions and conclusions can be obtained. The exception is that
the MADDPG does not perform well in the FC task.

6.4 Real world experiments
As shown in Figure 8, the real-world version of forma-
tion change presented in Section 6.1 was considered in
this experiment. The trained policies were deployed on the
Epuck, which is a small, lightweight robot platform. We fol-
lowed a direct sim2real paradigm to deploy the policy net-
work (De Souza et al. 2021). By incorporating our PSE ap-
proach into the MAPPO algorithm, the agents are able to
complete tasks with fewer risky states. Risky states are de-
fined as those in which the distance between agents is less
than 5 centimeters, and the rate of risky states is the propor-
tion of risky states to all states. The rate of risky states for
MAPPO-PSE is 2.1%, while the rate for MAPPO is 5.6%.
Details are provided in Section 5 of the Appendix.

7 Conclusion
In this paper, we newly introduce the partially symmet-
ric Markov game. We then theoretically show that the cor-
responding performance error is bounded. Based on the
bounded property, we propose a novel PSE framework to
adaptively leverage symmetry prior in MARL. Experimen-
tal results support the superiority of PSE over baselines. In
the future, we plan to extend the PSE to systems with hetero-
geneous agents, whose sensitivity to the symmetry-breaking
conditions is different.
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